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a b s t r a c t

Under tidal forcing, icy satellites with subsurface oceans deform as if the surface were a membrane
stretched around a fluid layer. ‘Membrane worlds’ is thus a fitting name for these bodies and membrane
theory provides the perfect toolbox to predict tidal effects. I describe here a new membrane approach to
tidal perturbations based on the general theory of viscoelastic–gravitational deformations of spherically
symmetric bodies. The massive membrane approach leads to explicit formulas for viscoelastic tidal Love
numbers which are exact in the limit of zero crust thickness. Formulas for load Love numbers come as a
bonus. The accuracy on k2 and h2 is better than one percent if the crust thickness is less than five percents
of the surface radius, which is probably the case for Europa and Titan. The new approach allows for den-
sity differences between crust and ocean and correctly includes crust compressibility. This last feature
makes it more accurate than the incompressible propagator matrix method. Membrane formulas factor-
ize shallow and deep interior contributions, the latter affecting Love numbers mainly through density
stratification. I show that a screening effect explains why ocean stratification typically increases Love
numbers instead of reducing them. For Titan, a thin and dense liquid layer at the bottom of a light ocean
can raise k2 by more than ten percents. The membrane approach can also deal with dynamical tides in a
non-rotating body. I show that a dynamical resonance significantly decreases the tilt factor and may thus
lead to underestimating Europa’s crust thickness. Finally, the dynamical resonance increases tidal defor-
mations and tidal heating in the crust if the ocean thickness is of the order of a few hundred meters.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Tidal Love numbers are three numbers quantifying the response
of a spherically symmetric body to tides or to changes in rotation
or orientation. Their computation is required for all applications
in which global deformations intervene: tidal or despinning tec-
tonics, tidal heating, true polar wander, tidal currents in Titan’s
seas (applications discussed in Beuthe (2015) except for the last
one, see Tokano et al. (2014)). Conversely, measuring Love num-
bers helps to constrain interior models.

Membrane worlds refer to planetary bodies with a thin shell
floating on a liquid layer (Beuthe, 2015). ‘Thin shell’ means here
that deformations can be predicted with simple membrane equa-
tions instead of the more complicated thick shell theory. In prac-
tice, membrane theory applies to shells having a thickness less
than five to ten percents of the surface radius. The term is thus per-
fectly suited to the large Galilean and Saturnian icy satellites for
which electric, magnetic (including auroral), and gravity data point
to the existence of a global ocean close to the surface (Table 1).
Though observations are still lacking, Triton and Ceres are
candidate membrane worlds (Nimmo and Spencer, 2015; Hand,

2015); many smaller bodies could also enclose an ocean but are
unlikely to satisfy the membrane assumption (Hussmann et al.,
2006). In this paper, I choose Europa and Titan as case studies
because of the available data, their potential for future missions,
and their differences in internal structure and orbital period
(Table 2).

In a previous paper, I obtained analytical formulas for tidal Love
numbers using thin shell theory in the membrane limit (Beuthe,
2015). Although the method was by and large successful (espe-
cially regarding depth-dependent crustal rheology), it was lacking
in some respects. First, it required that the floating shell be of the
same density as the underlying ocean. In the membrane limit (shell
of vanishing thickness), this is equivalent to assuming that the
membrane is massless. I will thus call this method the massless
membrane approach. Second, accurate benchmarking of the tilt
factor formula revealed a mismatch associated with shell com-
pressibility. Apparently, the classical equations of thin shell theory
are not completely satisfactory regarding their dependence on
compressibility. For these two reasons, I develop in this paper an
alternative membrane formalism, called the massive membrane
approach, which is based on the viscoelastic–gravitational
equations used to predict tidal deformations in thick shell theory.
These equations have been extensively validated through their
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accurate prediction of the frequency spectrum of Earth normal
modes (Dahlen and Tromp, 1999).

Though technically complex, the massive membrane approach
is based on two simple ideas. The first idea consists in using the vis
coelastic–gravitational equations in order to propagate the three
unknown Love numbers from the surface to the crust-ocean
boundary, where they must satisfy two conditions called free-slip
and fluid constraint. This procedure results in two relations
between tidal Love numbers, the ln � hn and kn � hn relations,
which depend on the effective viscoelastic parameters of the crust.
The second idea consists in factorizing the shallow interior from
the deep interior: in the static limit of equilibrium tides, the Love
numbers of the body with its viscoelastic crust are expressed in
terms of the Love numbers of a simpler model (or fluid-crust model)
in which the crust is fluid-like. Combining these two ideas leads to
explicit formulas for Love numbers in terms of crustal parameters
and of the deep interior structure. If tides are dynamical,
fluid-crust models must be given up but it remains possible to
derive membrane formulas for Love numbers in a model with an
infinitely rigid mantle. I will show that a dynamical resonance
increases surface deformations and tidal heating in the crust as
the ocean becomes shallower.

The massive membrane approach is more than ‘yet another
method’ for computing Love numbers. It has the interesting feature
that there is an overlap, but no coincidence, between the domains
of validity of the membrane approach and of the standard methods
(Fig. 1). To be more clear, three successive assumptions are com-
mon when computing Love numbers. First, the interior structure
of the undeformed body is assumed to be spherically symmetric.
Without this assumption, Love numbers do not really make sense
although the Love number concept is sometimes extended to flat-
tened bodies in rotation (Wahr, 1981). Numerical integration
methods must be used if no other assumption is made (e.g. Tobie
et al., 2005). Second, the static limit is often applied because
numerical codes tend to diverge at tidal periods if the body
contains a fluid layer (tides are particularly slow on Titan). For
example, Wahr et al. (2006), Rappaport et al. (2008), and Wahr

et al. (2009) use a code assuming the static limit in all layers
whereas Mitri et al. (2014) only apply the static assumption to
the ocean. Numerical integration remains necessary in the static
limit. Third, the interior structure is often discretized as an
onion-like superposition of incompressible and homogeneous lay-
ers. These rather strong assumptions lead to the incompressible
propagator matrix method (e.g. Sabadini and Vermeersen, 2004)
which provides analytic solutions for two- or three-layer models
while models with more layers are easily solved numerically (the
propagator matrix method also exists in a dynamical and com-
pressible version which is seldom used for reasons explained in
Appendix F). The matrix method is stable when solid layers
become fluid-like, contrary to most numerical codes. These quali-
ties make it popular in planetology (e.g. Moore and Schubert,
2000; Hussmann et al., 2002; Roberts and Nimmo, 2008;
Jara-Orué and Vermeersen, 2011). By contrast, the membrane
approach is based on the thin shell approximation, but it does
not require incompressible and homogeneous layers. Compared
to the propagator matrix method, the massive membrane approach
is simultaneously more restrictive (requiring a thin shell) and more
general (allowing for compressibility). As dynamical effects can be
included in some cases, one could say the same with respect to
codes computing static Love numbers by numerical integration.

2. Viscoelastic–gravitational theory

This section reviews the basics of viscoelastic–gravitational the-
ory that are used in the membrane approach.

2.1. yi functions and Love numbers

Viscoelastic–gravitational theory describes the deformations of
a self-gravitating body with a spherically symmetric internal struc-
ture. The deformations can result from tides, rotational flattening,
surface loading or free oscillations due to an (Earth) quake. In the
standard formalism of Alterman et al. (1959), the equations of
motion and Poisson’s equation form a set of six differential equa-
tions of first order, the solutions of which are six radial functions
yi (i ¼ 1; . . . ;6). Following the conventions of Takeuchi and Saito
(1972), y1 and y3 are scalars associated with radial and tangential
displacements, respectively,
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Table 1
Large icy satellites: some constraints on their crust thickness d (absolute and relative
to the surface radius R) from gravity (G), magnetic (M), auroral (A), and electric (E)
data.

d (km) d=R (%) Data Reference

Europa <170 <11 G Anderson et al. (1998)
<200 <13 M Zimmer et al. (2000)
<15 <1 M Hand and Chyba (2007)

Ganymede 150–330 6–13 A Saur et al. (2015)
Callisto <300 <12 M Zimmer et al. (2000)
Titan 55–80 2–3 E Béghin et al. (2012)

Table 2
Bulk and orbital parameters of Europa and Titan.

Parameter Symbol Europa Titan Unit

Spin ratea x 2.048 0.456 10�5 s�1

Surface radiusb R 1560.8 2574.76 km
GMa,c GM 3202.74 8978.14 km3 s�2

Moment of inertiad MoI 0.346 0.341 –
Bulk densitye qb 3013 1881.5 kg m�3

Surface gravitye g 1.315 1.354 m s�2

Dynamical parameterf qx 4.98 0.395 10�4

a JPL satellite ephemerides (http://ssd.jpl.nasa.gov/).
b Nimmo et al. (2007) for Europa, Mitri et al. (2014) for Titan.
c Iess et al. (2010) for Titan.
d Anderson et al. (1998) for Europa, Iess et al. (2012) for Titan.
e Computed from GM and R (G ¼ 6:674� 10�11 m3 kg�1 s�2).
f Computed from Eq. (20).

Fig. 1. Domain of validity of the membrane approach in comparison with other
methods (‘homog. incomp.’ = homogeneous and incompressible).
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