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a b s t r a c t

We consider the stability of binary asteroids whose members are possibly granular aggregates held
together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and struc-
turally stable to both orbital and structural perturbations. To this end, we extend the stability test for
rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71–99;
Sharma, I. [2013]. Icarus, 223, 367–382; Sharma, I. [2014]. Icarus, 229, 278–294) to the case of binary
systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members
subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically
appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624
Hektor and 90 Antiope.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

An increasing number of small objects such as asteroids and
trans-Neptunian/Kuiper-belt objects (TNO/KBO), hitherto thought
to be solitary, are being identified as binaries; see e.g.,
Richardson and Walsh (2006), Merline et al. (2002), etc.
Currently, about 15% of near-Earth asteroids (NEAs) with sizes
greater than 0.3 km are thought to be binary systems, and a similar
estimate holds for the main-belt asteroids; see, e.g., Scheirich and
Pravec (2009). The fraction of objects thought to be binaries is at
least 10% amongst the TNOs, see, e.g., Noll et al. (2008). The
members of several of these binary systems are believed to be
granular aggregates held together by self-gravity alone. This belief
rests primarily upon the low estimated densities of these objects,
for example, Itokawa, a possible contact binary, has an estimated
density of about 1.9 g cm�3; see Abe et al. (2006). Further support
comes from the hypothesis that binaries are often the result of the
coming together of particles following catastrophic events such as
tidal disruption (Walsh and Richardson, 2006), spin assisted
disruption or surface shedding (Walsh et al., 2008), or even
impacts (Michel et al., 2001, 2004).

Sharma (2010), henceforth Paper I, considered the equilibrium
of rubble binary systems. The binary’s members were taken to be
tidally-locked, ellipsoidal, granular aggregates orbiting on circular
orbits about their common center of mass with their long axes

aligned. The equilibrium shapes of fluid binaries has been exten-
sively studied in the context of the classical first- and second-
Darwin problems, see, e.g., Chandrasekhar (1969, Ch. 8). While
the first Darwin problem dealt with binaries whose secondary
was much smaller than the primary, the second Darwin problem
addressed binaries with congruent members. Leone et al. (1985)
attempted to extend the latter analysis to fluid binaries with
unequal members through their so-called ‘‘Roche binary approxi-
mation”; see also Descamps (2015). Within this approximation,
the members orbit at a Keplerian value and the equilibrium shape
of each member is found after neglecting the triaxial shape
of its companion. The contradictions inherent in their approach
were discussed in Paper I, where a self-consistent approach was
presented.

Stability analyses of binaries have typically focussed on the
orbital stability of these objects, disregarding the response of the
binary members as distributed masses that may deform signifi-
cantly. Extensions to situations wherein the physical extent of
the members is retained were pursued by Scheeres (2007), who
investigated the rotational fission of contact binaries, and
Scheeres (2009), who discussed the dynamical stability of the full1

planar two-body problem; in both cases the binary consisted of
rigid bodies. In astrophysical applications, structural stability of
ellipsoidal fluid binaries has, however, been investigated; see
Chandrasekhar (1969, Ch. 8). Some recent advances are due to Lai
et al. (1993, 1994) who considered the stability of compressible
inviscid fluid Roche and Roche-Riemann ellipsoids. These authors
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tested stability by minimizing an energy functional that was allowed
to depend on parameters such as the ellipsoid’s shape, density, mass,
orbital separation, angular momentum, and internal vorticity.

We are interested in the stability of binaries. A binary system
will be deemed stable only if the orbit and the structure of each
member are stable to both orbital and structural perturbations.
Here, by structure we mean the collection of material points that
constitute a binary member, and structural stability refers to this
collective staying close to its equilibrium configuration. We limit
ourselves to affine velocity perturbations of the equilibrium state.
This consists of homogeneous structural deformations of a member
about its, possibly moving, mass center. Post-perturbation, both
the primary and the secondary deform homogeneously. We discuss
stability more precisely in Section 4. While the present framework
is fairly general, we will present final calculations suitable for
binaries with rigid, prolate members.

In the current paper, the energy criterion will be introduced and
then specialized to the case of a binary system with rigid members.
The stability of granular binaries is investigated in part II of this
work. The stability of planar rigid binary system, with near-
spherical members, has been investigated previously by Scheeres
(2009). There are several reasons to consider the rigid binary sys-
tem separately. First, a stability analysis of a simple, but important
case, will help in clarifying our method. Second, a match between
our results in the case of a planar problem with those of Scheeres
(2009) will engender confidence both in the final stability predic-
tion and the energy stability criterion. Third, we do not restrict our-
selves to the plane, but investigate the full three-dimensional
problem. Fourth, rather than expanding the gravitational field of
an ellipsoidal object in a series of mass moments about the field
of a spherical body, we work with the tidal potentials of ellipsoids,
and are so able to observe the effect of shape on the binary’s stabil-
ity. The latter two generalize the stability problem considered by
Scheeres (2009). Finally, we will require the stability results for a
rigid binary when we consider the stability of granular binaries.

We first derive dynamical equations for a binary system with
rigid ellipsoidal members. We generally follow the notation of
Paper I, noting changes explicitly. A short primer on tensors is
available in Sharma (2009, App. A), and more information may
be found in texts such as Knowles (1998).

2. Binary dynamics

We model a binary system as consisting of two ellipsoidal
members orbiting about their common center of mass; see Fig. 1.
The more massive of the two members is designated as the
primary, while the other is the secondary. Both members have
associated with them their respective principal axes coordinate
systems. The principal coordinate system P of the primary is
defined by the unit vectors ê0i, while ê00i identify the principal frame
S of the secondary. All other vectors and tensors related to
the primary (secondary) will be labeled by a subscript ‘P’ (‘S’),
while associated scalars will be indicated by single primes ‘0’
(double primes ‘00’), e.g., q0 and q00 refer to the densities, respec-
tively, of the primary and the secondary. Similarly, the components
of a vector or tensor quantity in P (S) will be indicated by a single
prime (double prime), e.g., the location rP of the center of mass of
the primary with respect to the binary’s mass center C may be
expressed as r0iP ê

0
i in P, or as r00iP ê

00
i in S. The distance of the primary

from C remains, however, r0 in both P and S. Finally, êP and êS, with
êP ¼ �êS, are unit vectors that orient the primary and the secondary
with respect to each other. The location of the primary with respect
to the secondary, and vice versa are, respectively, RP ¼ RêP and
RS ¼ RêS, with R being the separation between the members of
the binary system.

For investigating stability, it is necessary to rewrite governing
equations in an appropriate coordinate system O that rotates at
ωðtÞ and has its origin at the binary’s mass center. We define O
in Section 4.1. Relative to O, the frames P and S rotate at,
respectively, xPðtÞ and xSðtÞ. In the sequel, we will associate to
any angular velocityxðtÞ an anti-symmetric angular-velocity tensor
XðtÞ, so that, for every vector x,

ω� x ¼ X � x; ð1Þ
ω is the axial vector of X. Unless otherwise stated, all time deriva-
tives will be with respect to an observer in the rotating frame O.

2.1. Rigid body motion

Consider the binary shown in Fig. 1. Let the binary have rigid
members with wP and wS being the angular velocities of, respec-
tively, the primary and the secondary, as observed in a rotating
frame O. Material points within a member are located relative to
its mass center by x. Invoking (1), we may write,

_xS ¼ wS � xS ¼ WS � xS and _xP ¼ wP � xP ¼ WP � xP : ð2Þ
Adding the motions of the mass centers, the velocities of material
points within the two members become

vS ¼ _rS þWS � xS and vP ¼ _rP þWP � xP : ð3Þ
Paper I derives dynamical equations governing a binary with

homogeneously deforming members. These are now written in
the rotating frame O, and specialized to the case of a rigid binary
by setting the velocity gradient tensors LS and LP to be, respec-
tively, WS and WP . We find:

_WS þW2
S

� �
� IS ¼ �rSV

00 þMT
S � _XþX2 þ 2X �WS

� � � IS ð4aÞ

and _IS ¼ WS � IS � IS �WS; ð4bÞ
and

_WP þW2
P

� �
� IP ¼ �rPV

0 þMT
P � _XþX2 þ 2X �WP

� � � IP ð5aÞ

and _IP ¼ WP � IP � IP �WP; ð5bÞ
where the dot (_) indicates time derivative with respect to an obser-
ver in O;r ¼ RV rdV=V is the volume-average stress tensor within a
rigid binary member,

I ¼
Z
V
qx� xdV ð6aÞ

and M ¼
Z
V
qx� bdV ; ð6bÞ

are, respectively, the inertia tensor of a member and the external
moment tensor acting on it, and q and V are the density and volume
of a member, respectively. We recall that the outer product
a� b of two vectors is a second-order tensor whose components
a� bð Þij ¼ aibj.

Both the average stress within the rigid members, and Euler’s
equation governing their angular velocities, are included in the
first of (4) and (5). The average stress may be extracted by taking
the symmetric parts of these equations. The anti-symmetric parts
of (4a) and (5a) yield, respectively,

JS � _ωS þωS � JS �ωSð Þ ¼ TS ð7aÞ

and JP � _ωP þωP � JP �ωPð Þ ¼ TP ; ð7bÞ
where
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