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a b s t r a c t

A 20th degree ellipsoidal harmonic gravity field of Vesta is determined by processing radiometric Doppler
and range data from the Dawn mission. The gravity field shows sensitivity up to degree 18 and the coef-
ficients are globally determined on average to degree 15. Gravity anomalies are mapped to the Brillouin
ellipsoid (304 � 289 � 247-km), which is a substantially closer fit to the surface than the reference ellip-
soid (290 � 290 � 265-km) used to map the conventional spherical harmonic series, especially near the
poles. Two models of internal structure are subsequently explored, in which density variations are per-
mitted in the uppermost layer (i.e., crust) in order to explain Vesta’s local gravitational signature. These
models include the case of a two-layer model with an average crustal thickness of 55.5 km and a three-
layer model with an average crustal thickness of 22.4 km. For both two-layer and three-layer scenarios,
the Bouguer gravity anomaly is minimized for a crustal density of 2970 kg/m3. The remaining Bouguer
anomalies can be explained by lateral crustal density variation of 2310–3440 kg/m3 and 2660–
3240 kg/m3 for the 22.4 km and 55.5 km crustal thickness models, respectively. The general trend of
the estimated lateral crustal densities for the two cases is very similar, with a wider range for the
22.4 km case due to a thinner crust. This indicates that a thick crust (e.g., 55.5 km) would be more favor-
able for minimizing the range of lateral crustal density variations. Consideration of independent geo-
chemical and petrological constraints suggests that a three-layer model is a more appropriate
representation of Vesta’s internal structure, despite the fact that two-layer models provide a satisfactory
fit to gravity data alone. In detail, it is found that densities derived from gravity data assuming three-layer
models and those derived from the howardite–eucrite–diogenite meteorites and estimates of plausible
bulk-Vesta composition show an excellent level of mutual consistency.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Dawn spacecraft entered orbit around Vesta on July 16,
2011, and departed Vesta on September 5, 2012. During this peri-
od, Deep Space Network (DSN) stations tracked the spacecraft at
different altitudes as a part of the Dawn gravity science experiment
and acquired X-band (7.179 GHz uplink and 8.435 GHz downlink)
two-way coherent Doppler and range data (Konopliv et al.,
2011). The mission also mapped Vesta’s surface using its onboard
framing camera (5.5� field of view). The images were used to create
a high-resolution Vesta shape model with spatial resolution rang-
ing from 20 to 260 m (Gaskell, personal communication).
Both radiometric and optical measurements were processed to

determine a 20th degree and order spherical harmonic gravity field
and orientation parameters of Vesta (Konopliv et al., 2014). De-
tailed harmonic and statistical analyses of the gravity and topogra-
phy of Vesta are discussed in a companion paper (Bills et al., 2014).

The purpose of this paper is to represent Vesta’s gravity field
using alternate basis functions and to discuss possible constraints
applicable to Vesta’s internal structure. The gravitational potential
of spherical bodies, such as planets, is usually modeled using the
spherical harmonic expansion (Kaula, 1966; Heiskanen and Moritz,
1967), i.e.,
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where G is the gravitational constant, M is the mass of the central
body, n is the degree, m is the order, Pnm are the fully normalized
associated Legendre functions, Cnm and Snm are the fully normalized
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spherical harmonic coefficients (the corresponding normalized zo-
nal harmonics are Jn ¼ Cn0), R is the reference radius of the body
(265-km for Vesta), / is the latitude, and k is the longitude. The
acceleration can be computed by taking the gradient of Eq. (1). Gi-
ven a field point, i.e., a point where the potential is evaluated, the
spherical harmonic series generally converge outside of the Brillou-
in sphere (292.7-km for Vesta) and generally diverges inside the
Bjerhammar sphere (212.3-km for Vesta) (Grafarend and Engels,
1994). Note that the Brillouin sphere is the external sphere defined
by the largest surface radius and the Bjerhammar is the internal
sphere with the smallest surface radius. Fig. 1 shows Brillouin and
Bjerhammar spheres of Vesta. Testing for convergence between
these two spheres is a non-trivial problem. For practical purposes,
spherical harmonic series converge on the 290 � 265-km ellipsoid
(Konopliv et al., 2014) shown in Fig. 1, which yields 32.4 km above
the surface at the north pole, 40.1 km above the surface at the south
pole, and 25.8 km above the surface on average. Note that the aver-
age altitude was computed from (

P
iaivi)/vc, where ai is the altitude

of a field point, vi is the volume of the differential crustal element at
the field point, mc is the total volume of the crust, and the summa-
tion is done over the entire crustal volume.

For geophysical studies, it is often desired to map gravity close
to the surface in order to avoid gravity signal attenuation. Consid-
ering Vesta’s shape being closer to a tri-axial ellipsoid than a
sphere, an ellipsoidal harmonic expansion is a natural, and argu-
ably more optimal, basis function for representing gravity (Garmier
and Barriot, 2001; Garmier et al., 2002). The gravitational potential
using an ellipsoidal harmonic expansion can be represented as
(Garmier and Barriot, 2001):

Ueðk1; k2; k3Þ ¼ GM
X1
n¼0

X2nþ1

m¼1

�anm
Fnmðk1Þ
FnmðReÞ

Enmðk2ÞEnmðk3Þ; ð2Þ

where �anm are the normalized ellipsoidal harmonic coefficients, Fnm

are the Lamé function of the second kind, and Enm are the normal-
ized Lamé function of the first kind. In this study, the computation
of Lamé functions is done in quadruple-precision, which is shown to
be stable up to about degree 24. The ellipsoidal coordinates k1, k2,
and k3 are defined as the three real roots of the conic equation, i.e.,

x2

s2 � a2 þ
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s2 � b2 þ
z2

s2 � c2 ¼ 1; ð3Þ

where x, y, and z are the corresponding Cartesian coordinates and a,
b, and c are the reference ellipsoid radii. In Eq. (2), k1 serves a role
similar to the radius (r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
), and k2 and k3 are essen-

tially equivalent to latitude (/) and longitude (k). Moreover, the ra-
tio Fnmðk1Þ=FnmðReÞ plays a role similar to the ratio R/r and the
product Enmðk2ÞEnmðk3Þ is similar to the product Pnmðsin /Þ cosðmkÞ
or Pnmðsin /Þ cosðmkÞ in the spherical harmonic expansion (Garmier
and Barriot, 2001; Garmier et al., 2002). For each degree, the num-
ber of ellipsoidal harmonic coefficients is the same as in the spher-
ical harmonic expansion, i.e., �anm are equivalent to Cnm and Snm. For
a 20th degree field, there are a total of 441 coefficients.

Another way of representing the external gravity is using a
polyhedron model (Werner, 1996). The gravitational potential of
a constant-density polyhedron can be represented as:
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where . is the density, rT
e Eere � Le is the contribution of an edge, and

rT
f Ff rf �xf is the contribution of a face (Werner, 1996; Werner and

Scheeres, 1997; Park et al., 2010). Note that the spherical harmonic
series may diverge if a field point is inside of the Brillouin sphere,
but the polyhedral approach is guaranteed to converge if a field

Fig. 1. Various reference spherical/ellipsoidal representations for Vesta and a three-layer model discussed in this paper. Here Vesta is viewed from the east (i.e., x-axis).
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