#### Dyes and Pigments 88 (2011) 103-108

Contents lists available at ScienceDirect

Dyes and Pigments

journal homepage: www.elsevier.com/locate/dyepig

# A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion

# Tianrong Li, Zhengyin Yang\*, Yong Li, Zengchen Liu, Gaofei Qi, Baodui Wang

College of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China

# ARTICLE INFO

Article history: Received 8 June 2009 Received in revised form 11 May 2010 Accepted 13 May 2010 Available online 9 June 2010

Keywords: Copper(II) ion Chemosensor Real-time Binding mode Fluorescein PMBP

# ABSTRACT

A novel fluorescein derivative, synthesized by the reaction of fluorescein hydrazide and 1-phenyl-3methyl-4-benzoyl-5-pyrazolone, was evaluated as a chemoselective metal ion sensor. Addition of  $Cu^{2+}$  to an aqueous solution of the fluorescein derivative resulted in a rapid color change from colorless to deep yellow together with a distinctive change in UV–vis absorption spectrum. However, other common alkali-, alkaline earth-, transition- and rare earth metal ions induced no or minimal spectral changes. The stoichiometry of the reaction and association constant of the fluorescein derivative with  $Cu^{2+}$  are described. Experimental results indicate that the fluorescein derivative could provide a rapid, selective and sensitive response to  $Cu^{2+}$ , and could be used as a potential  $Cu^{2+}$  colorimetric chemosensor in aqueous solution.

© 2010 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Metal ion sensors are employed in applications ranging from clinical toxicology, environmental bioinorganic chemistry, bioremediation, and waste management [1–3] and much attention has focussed to the development of sensing devices for copper(II). As the third most abundant divalent metal ion in the human body, after  $Fe^{2+}$  and  $Zn^{2+}$ ,  $Cu^{2+}$  plays a pivotal role in a variety of fundamental physiological processes in organisms ranging from bacteria to mammals [4,5]. Copper compounds are also employed for plant diseases treatment, water treatment and as preservatives for wood and leather. Nonetheless, while a low-level background intake of copper is indispensable, high doses of copper can be harmful and even toxic to biological systems [4,6].

Many sensing methods for detecting  $Cu^{2+}$  have been described, such as colorimetric and fluorescent chemosensors, and electrochemical methods [7–9]. Colorimetric sensors are promising due to the simplicity of the assay. Furthermore, colorimetric assays have a significantly lower capital cost than closely related methods, such as fluorescent sensors, for which both spectrophotometric equipment and a UV light source are required [10–16].

The fluorescein and rhodamine family of dyes, with spirolactam structure (closed form) are non-fluorescent. As shown in Fig. 1, ring-opening of the spirolactam gives the open form and results in a strong fluorescence and obvious color change [17–20]. Due to large visible-range extinction coefficients and high fluorescence quantum yields for fluorescein and rhodamine, these compounds are excellent antenna chromophores [21–26].

In recent years, several rhodamine-based chemosensors and chemodosimeters for metal ions, such as  $Cu^{2+}$  [27–30],  $Hg^{2+}$  [20,31–34],  $Fe^{3+}$  [35], and  $Pb^{2+}$  [19] have been studied. The cationsensing mechanism of these probes is based on the change in structure between spirocyclic and opencyclic forms. However, fluorescein-based probes have received comparatively little attention [36,37]. We synthesized a fluorescein-based colorimetric chemosensor, 1-phenyl-3-methyl-5-hydroxypyrazole-4-benzoyl (fluorescein)hydrazone (1), for rapid, selective and sensitive response to  $Cu^{2+}$  in aqueous media (Fig. 2). Solutions of 1 are colorless, but upon addition of micromolar  $Cu^{2+}$  a deep yellow color is obtained. Addition of other common alkali-, alkaline earth-, transition- and rare earth metal ions result in no or minimal spectral change. Compound 1 is a naked-eye chemosensor for





<sup>\*</sup> Corresponding author. Tel.: +86 931 891 3515; fax: +86 931 891 2582. *E-mail address*: yangzy@lzu.edu.cn (Z. Yang).

<sup>0143-7208/\$ —</sup> see front matter  $\odot$  2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.dyepig.2010.05.008



Fig. 1. Structure of fluorescein, rhodamine B and rhodamine 6G.

detection of  $Cu^{2+}$  that upon chelation of  $Cu^{2+}$  **1** will change to a strongly colored ring-opened form.

# 2. Experimental

#### 2.1. Materials and instruments

All the materials for synthesis were purchased from commercial suppliers and used without further purification. With the exception of  $Al(NO_3)_3$  and  $MgSO_4$ , aqueous solutions of metal ions were prepared from their chloride salts.

NMR spectra were taken on a Bruker Avance DRX-200 or Varian Mercury Plus-300 BB spectrometer with TMS (tetramethylsilane) as internal standard and DMSO- $d_6$  as solvent. Mass spectra were obtained on a Bruker Esquire 6000 spectrometer. UV–vis absorption spectra were obtained with a Perkin Elmer Lambda 35 UV–vis spectrophotometer and recorded in quartz cells with 1 cm optical path length. Fluorescence spectra were recorded on a Hitachi RF-4500 fluorescence spectrophotometer.

#### 2.2. General procedures of metal ion sensing

# 2.2.1. Job's plot analyses

For Job's plot analyses (in Section 3.3), a  $1.0 \times 10^{-3}$  M stock solution of Cu<sup>2+</sup> in H<sub>2</sub>O, and  $1.0 \times 10^{-3}$  M stock solution of **1** in DMSO (dimethylsulfoxide) were prepared. The Cu<sup>2+</sup> stock solution and the stock solution of **1** were placed in a test tube to obtain a total volume of 20 µL, then diluted to 2 mL with DMSO/H<sub>2</sub>O (4:6, v/v) to get the test solution (nine test solutions were got; for the



Fig. 2. Synthetic route of chemosensor 1.

first test solution, 2  $\mu$ L stock solution of Cu<sup>2+</sup> and 18  $\mu$ L stock solution of **1** were used, then diluted to 2 mL with DMSO/H<sub>2</sub>O (4:6, v/v) to get the first test solution; for the second test solution, 4  $\mu$ L stock solution of Cu<sup>2+</sup> and 16  $\mu$ L stock solution of **1** were used; for the third test solution, 6  $\mu$ L stock solution of Cu<sup>2+</sup> and 14  $\mu$ L stock solution of **1** were used; until 18  $\mu$ L stock solution of Cu<sup>2+</sup> and 2  $\mu$ L stock solution of **1** were used to get the ninth test solution). All the analyses were performed with [**1**] + [Cu<sup>2+</sup>] = 10.0  $\mu$ M. The absorbance at 495 nm of these test solutions was recorded.

#### 2.2.2. Spectral analyses

In other spectral analyses, a  $1.0 \times 10^{-3}$  M solution of **1** was prepared in DMSO, and then diluted by DMSO/H<sub>2</sub>O (4:6, v/v) to give a  $1.0 \times 10^{-5}$  M stock solution of **1** for spectral analyses. Stock solutions of metal ions were prepared in H<sub>2</sub>O ( $2.0 \times 10^{-3}$  M of Cu<sup>2+</sup> was used in Section 3.2;  $2.0 \times 10^{-2}$  M of metal ions were used in other sections, except Sections 3.2 and 3.3). Each time, a 2 ml stock solution of **1** ( $1.0 \times 10^{-5}$  M) was added to the quartz cell, and the required quantity of stock solution of metal ions was added with a microsyringe.

All the measurements were taken at room temperature about 298 K. After 2 min of the mixing of metal ions with **1**, UV–vis absorption spectra or fluorescence emission spectra were measured, unless otherwise indicated. For all fluorescent tests, excitation wavelength was 287 nm, with excitation and emission slit widths both 5 nm. Addition of metal ions increased the volume by no more than 0.04 mL, so that dilution was insignificant.

# 2.3. Synthesis

# 2.3.1. Synthesis of fluorescein hydrazide (2)

In a 100 mL flask containing a suspension of fluorescein (6 g, 18.1 mmol) in 50 mL methanol, excess hydrazine hydrate (24 mL; hydrazine content >80 mass%) was added. The reaction mixture was heated to reflux for 7 h with stirring, during which time the suspended particles were consumed and a clear solution was obtained. The ensuing solution was allowed to cool and poured into 400 mL H<sub>2</sub>O at which time, a yellow precipitated formed immediately, which was allowed to settle for 2 h. The aqueous suspension was filtered, washed with water until the filtrate was colorless, and washed 3  $\times$  10 mL with cold absolute ethanol. The crude product was purified by recrystallization from ethanol to give 3.59 g of **2** as an off-white solid (57%). Melting point: 262–264 °C. <sup>1</sup>H NMR (200 MHz, DMSO- $d_6$ ),  $\delta$  (ppm): 4.38 (s, 2H), 6.42 (m, 4H), 6.59 (s, 2H), 6.97 (m, 1H), 7.48 (m, 2H), 7.76 (m, 1H), 9.81 (s, 2H). <sup>13</sup>C NMR (50 MHz, DMSO-*d*<sub>6</sub>), δ (ppm): 64.6, 102.3, 109.9, 111.9, 122.3, 127.9, 128.4, 129.3, 132.6, 151.5, 152.4, 158.1, 165.4.

# 2.3.2. Synthesis of 1-phenyl-3-methyl-5-hydroxypyrazole-4benzoyl(fluorescein)hydrazone (1)

In a 25 mL flask, **2** (0.346 g, 1 mmol) and 1-phenyl-3-methyl-4benzoyl-5-pyrazolone (PMBP; 0.278 g, 1 mmol) were suspended in 10 mL methanol. The mixture was refluxed for 8 h with stirring, during which time a clear solution formed. Following reaction, the mixture was allowed to cool to room temperature and a yellow precipitate formed. The precipitated was separated by filtration and washed with 3 × 10 mL methanol. After drying, 0.25 g of **1** (bright yellow solid) was prepared in 41% yield. Melting point >320 °C. <sup>1</sup>H NMR (300 MHz, DMSO- $d_6$ ),  $\delta$  (ppm): 1.23 (s, 3H), 5.96 (s, 2H), 6.35 (s, 2H), 6.61 (d, J = 2.1 Hz, 3H), 7.12 (m, 3H), 7.21 (s, 2H), 7.36 (m, 3H), 7.63 (m, 2H), 7.77 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 6.9 Hz, 1H), 10.04 (s, 2H), 11.51 (s, 1H). <sup>13</sup>C NMR (75 MHz, DMSO- $d_6$ ),  $\delta$  (ppm): 15.1, 66.4, 100.7, 102.4, 107.5, 113.2, 118.2, 123.3, 124.4, 127.1, 127.7, 128.7, 129.5, 130.2, 134.7, 138.3, 147.4, 149.6, 152.8, 159.0, 164.7, Download English Version:

https://daneshyari.com/en/article/177314

Download Persian Version:

https://daneshyari.com/article/177314

Daneshyari.com