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a b s t r a c t

Gravity measurements and elevation data from the Cassini mission have been used to create shape, global topography
and gravity anomaly models of Titan that enable an improved understanding of its outer ice I shell structure. We
provide constraints on the averaged ice shell thickness and its long-wavelength lateral variations, as well as the
density of the subsurface ocean using gravity anomalies, the tidal Love number k2 measurement and long-wavelength
topography. We found that Titan’s surface topography is consistent with an approximate isostatically compensated ice
shell of variable thickness, likely in a thermally conductive or in a subcritical convective state, overlying a relatively
dense subsurface ocean.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Gravity field measurements (Iess et al., 2010, 2012) and shape models (e.g.,
Zebker et al., 2009a) provide insight into the interior structure of Titan. Iess et al.
(2010, 2012) determined the gravity field of Titan with a spherical harmonic expan-
sion to degree three whereas the abundance of altimetry and SAR-Topography data
have allowed the estimation of Titan’s shape up to degree 7 (Zebker et al., 2009a).
Internal structure models of Titan are constrained, though not uniquely, by its mo-
ment of inertia, which can be estimated from the gravity field’s quadrupole mo-
ments neglecting non-hydrostatic components. The estimated normalized
moment of inertia of Titan ðMol ffi 0:3414� 0:0005Þ (Iess et al., 2010) is high
relative to that of Ganymede, its closest twin in terms of mass and radius. Non-
hydrostatic contributions to degree-2 gravity coefficients might produce an overes-
timate of the moment of inertia, and even if the more probable value of MoI is 0.34,
a value of 0.33 must be considered as a lower bound value (Iess et al., 2010; Gao and
Stevenson, 2013). To explain the relatively high moment of inertia, it has been sug-
gested that Titan may have either a fully differentiated structure with a deep inte-
rior composed of hydrated silicates—for example, mineral antigorite (Castillo-Rogez
and Lunine, 2010; Fortes, 2012) or else that the interior is only partially differenti-
ated and at depth is composed of a mixture of ice and rock (Iess et al., 2010; Mitri
et al., 2010a). Serpentines as antigorite are hydrous silicates formed on Earth from
anhydrous Fe–Mg minerals during hydrothermal alteration of the oceanic

lithosphere or from hydration of peridotide above subducting slabs (e.g. Hilairet
et al., 2006). These minerals might be formed on Titan by hydrothermal alteration
during differentiation as proposed by Castillo-Rogez and Lunine (2010).

The recently measured tidal Love number, k2, of Titan indicates that the outer
ice I shell is decoupled from the deep interior by a global subsurface ocean (Iess
et al., 2012). Previous analysis of Titan’s ice shell (Nimmo and Bills, 2010) argued
that to explain the apparent non-hydrostaticity of Titan’s shape, its ice shell thick-
ness must vary as a function of latitude thereby suggesting that the ice shell is in a
conductive state (see also Hemingway et al., 2013). Nimmo and Bills (2010) analysis
was based on the fluid Love number (kf = 1) derived from the quadrupole moments
of the gravity field assuming the hydrostaticity of Titan (Iess et al., 2010) and the
shape model of Zebker et al. (2009a).

We produced global topography and gravity anomaly models of Titan that en-
able an improved understanding of its outer ice I shell structure. We constrain the
thermal state and thickness of Titan’s ice shell, as well as its lateral variation using
as constraints the tidal Love number k2 (Iess et al., 2012), gravity anomalies and
topographic shape models. The shape model used in our analysis of the ice shell
is updated from the one presented in Zebker et al. (2009a) based on more recent
SAR-Topography (Stiles et al., 2009) and altimetry datasets (Elachi et al., 2004).
Then we show that the high measured value of k2 indicates that the outer ice shell
is overlying a relatively dense subsurface ocean.

2. Method

In this section we present the methods used to provide the shape (Section 2.1),
the gravity anomalies (Section 2.2) and to model the tidal deformation of the ice I
shell (Section 2.3).
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2.1. Shape model

Zebker et al. (2009a) modeled Titan’s shape using surface heights derived from
Cassini RADAR altimeter (Elachi et al., 2004) and SAR-Topography (Stiles et al.,
2009) data products. Both data products are sparsely distributed and collectively
cover only a small area of Titan’s surface (�1%). Initially, this dataset was further
hindered by an uneven latitudinal distribution which incorporated only minimal
coverage near the southern pole, prompting Zebker et al. (2009a) to use constrained
inversion methods that penalized solutions which deviated from spherical. The
current SAR-Topography and Altimetry datasets encompass a greater than 20%
increase in areal coverage and, more significantly, a factor of six increase in the
coverage poleward of 60�S as compared to what was available to Zebker et al.
(2009a). We have used all of these much more comprehensive data sets (acquired
through June 2011) to update the best-fit spherical harmonic expansion of Titan’s
shape. As expected, the new model differs from previous solutions most substan-
tially in the southern hemisphere.

We modeled Titan’s shape ðrSðh;/Þ using a spherical harmonic expansion of the
form:

rs ¼
Xn

lP0

Xl

mP0

Cs
lmYC

lm þ Ss
lmYS

lm

� �
ð1Þ

where Cs
lm and Ss

lm are the harmonic coefficients of the shape, expressed in meters,
and YC

lm and YS
lm are real orthonormal spherical harmonic basis functions of degree

l and order m:

YC
lm ¼ ð�1ÞmPlmðcos hÞ cosðm/Þ ð2Þ

YS
lm ¼ ð�1ÞmPlmðcos hÞ sinðm/Þ ð3Þ

For l = 0, rs = RT the mean radius; h is the co-latitude, / is the longitude (measured to
be positive eastward), and Plm are the un-normalized associated Legendre polynomi-
als (Abramowitz and Stegun, 1965). Best-fit coefficients (and their associated uncer-
tainties) were determined from the unconstrained least-squares solution of Eq. (1) in
the presence of known covariance. The data’s covariance matrix, CH, incorporates
both the random and systematic errors associated with the Altimetry and SAR-
Topography datasets. Accordingly, each element cij of CH is defined as:

cij ¼ e2
i þ rirjpijdij ð4Þ

where ei is the random, or instantaneous, component of the error associated with
pointing and algorithmic uncertainty, ri,j is the correlated component of the error
associated with errors in spacecraft ephemeris, pij is a Pearson correlation coefficient
between points i and j, and dij is a Kronecker delta function that is unity if points i
and j are part of the same Titan observation and zero otherwise. See Zebker et al.
(2009b) for an explanation of altimetry errors and Stiles et al. (2009) for an explana-
tion of errors associated with the derivation of SAR-Topography points. The Pearson
correlation coefficient (pij) is assumed to exponentially decrease with increasing dis-
tance between two points in the same flyby:

pij ¼ exp �dij

Lc

� �
ð5Þ

where dij is the distance between points i and j on Titan’s surface and Lc is an assumed
e-folding distance (Lc = 1000 km). The value of Lc was chosen to represent the approx-
imate correlation length of spacecraft ephemeris errors. The solution is only weakly
dependent on this value (see Supplementary online material). In order to reduce com-
putational complexity and restrict CH to practical dimensions, the SAR-Topography
and Altimetry data points (along with their associated uncertainties) were binned
according to a 2 pixel-per-degree sinusoidal projection prior to solving for the best-
fit spherical harmonic coefficients. The variance of the best-fit shape (EH) is given by:

EHðh;/Þ ¼ Aðh;/Þ
XH

Aðh;/ÞT ð6Þ

where
PH is the covariance matrix of the best-fit coefficients Clm and

Slm (
PH = (wT(CH)�1w)�1, where w is a concatenated matrix of YC

lm and YS
lm evaluated

at the known topography points) and A is a concatenated matrix of YC
lm and YS

lm eval-
uated at (h, u).

We also determined the principal axes of Titan’s shape as:

a ¼ RT �
1
2

CS
20 þ 3CS

22 ð7Þ

b ¼ RT �
1
2

CS
20 � 3CS

22 ð8Þ

c ¼ RT þ CS
20 ð9Þ

The principal axes were also determined by directly solving for the best-fit tri-axial
ellipsoid.

As the primary purpose of this effort was comparison with gravity, the shape
was only determined through order 6. For these low orders, the solution did not
have to incorporate a priori constraints, such as penalizing deviations from spherical
solutions. When fitting to higher orders, however, the coefficients for large degrees
were unstable and needed to include constraints (see Supplementary online mate-
rial). An independent analysis of Titan’s shape by Zebker et al. (2012) incorporates
such constraints. For orders six and below, we found that our results are equivalent,
to within one standard deviation, to the results of Zebker et al. (2012).

2.2. Topography and gravity anomalies

2.2.1. Topography
We determined the topography of Titan determined as the shape elevation

(Section 2.1) referred to the gravity ellipsoid. The gravity ellipsoid, with radius rell,
is defined by the quadrupole equipotential surface given by the quadrupole gravi-
tational coefficients C20 (J2 = �C20) and C22 (Iess et al., 2012). The topography (hS)
is given by the difference between the elevation of the shape (rS) given by Eq. (1)
and the radius of the reference ellipsoid (rell):

hS ¼ rS � rell ð10Þ

The gravitational potential referred to the ellipsoid is given by:

Uell ¼ �
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2
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where G is the gravitational constant, MT and MS are the mass of Titan and Saturn,
respectively, r is the radial distance, RT is the mean radius of Titan, / is the longitude,
x is the spin rate, aT the semi-major axis of Titan’s orbit, and P20 and P22 are associ-
ated Legendre functions. The last two terms in the expression of Eq. (11) give the
rotational and tidal contribution to the gravitational potential Uell (see Heiskanen
and Moritz, 1975). The spin rate x is inferred from IAU model (Seidelmann et al.,
2006), considering the synchronous rotation of Titan (Meriggiola et al., 2013, in
preparation). The used physical parameters are summarized in Table 1.

Finally, the radius of the reference ellipsoid rell is inferred from Eq. (11) comput-
ing the correspondent equipotential surface:

rell ¼ RT 1þ C20 �
5
6

qr

� �
P20 þ C22 þ

1
4

qr

� �
P22 cos 2/

� �
ð12Þ

where qr and qt are respectively the contributions due to the rotational and the tidal
deformations:

qr ¼
x2RT

GMT
¼ 3:9528 � 10�5 ð13Þ

qt ¼ �3
RT

aT

� �3 GMS

GMT
¼ �1:1858 � 10�4 ð14Þ

where for a synchronous rotation body qt/qr = �3.

2.2.2. Gravity anomalies
We determined the free air gravity anomalies and Bouguer gravity anomalies

for Titan. The free air gravity anomalies are given by:

gFA ¼
GMT

r2
S

X
lP3

ðlþ 1Þ RT

rS

� �lXl

m¼1

ClmYC
lm þ SlmYS

lm

� �" #
ð15Þ

where YC;S
lm are the spherical harmonic basis functions. Eq. (15) does not take into ac-

count the free air correction for the computation of the free air anomalies as Titan’s
gravity field was measured from the spacecraft rather than from ground measure-
ments. We determined the free air anomalies using the degree-three of the gravity

Table 1
Physical parameters.

Parameter Variable Value Reference

Gravitational parameter of Titan GMT 8978.1394 km3 s2 Iess et al. (2010)
Spin rate x 22.5769768 deg day�1 Meriggiola et al. (2013, preparation)
Ice density qice 920–935 kg m�3 e.g. Mitri et al. (2010b)
Mean orbital distance of Titan from Saturn aT 1.2218 � 106 km e.g. Sotin et al. (2010)
Gravitational parameter of Saturn GMS 37931207.7 km3 s�2 Jacobson et al. (2006)
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