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a b s t r a c t

The planetary exospheres are poorly known in their outer parts, since the low neutral densities are
difficult to measure in situ. The exospheric models are thus often the main source of information at such
high altitudes. We revisit here the importance of a specific exospheric population, i.e. the satellite parti-
cles, which is usually neglected in the models. These particles are indeed produced through rare collisions
in the exospheres, and may either be negligible or dominate the exospheres of all planets with dense
atmospheres in our Solar System, depending on the balance between their sources and losses. Richter
et al. (Richter, E., Fahr, H.J., Nass, H.U. [1979]. Planet. Space Sci. 27, 1163–1173) were the first to propose,
beyond the Chamberlain’s (Chamberlain, J.W. [1963]. Planet. Space Sci. 11, 901–901) rough approxima-
tion, a rigorous approach for these particles by using the Boltzmann equation in the Earth exosphere
below 3000 km altitude. They pointed out their negligible presence at low altitudes without doing this
calculation at higher altitudes. We further investigate this approach at Earth and apply it another
planetary exospheres – Mars and Titan – thanks to improvements in the computing power and the col-
lected planetary data. We determine the contribution of the satellite particles densities of light elements
(H2 at Titan, H at Earth and Mars), and show in particular that the H satellite particles may contribute very
significantly to the martian exospheric densities at high altitudes. The H2 satellite particles are also non-
negligible at Titan whereas the H satellite population represents only a small fraction of the total density
at Earth. Considering collisionless exospheric profiles – such as the Chamberlain (Chamberlain, J.W.
[1963]. Planet. Space Sci. 11, 901–901) approach including the ballistic and escaping populations only
– could thus lead to significant underestimations of the total densities at high altitudes in some
conditions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The exosphere is the upper layer of any planetary atmosphere: it
is a quasi-collisionless medium where the particle trajectories are
more dominated by gravity than by collisions. Above the exobase,
the lower limit of the exosphere, the Knudsen number (Ferziger
and Kaper, 1972) becomes large, collisions become scarce, the dis-
tribution function cannot be considered as Maxwellian anymore
and, gradually, the trajectories of the particles are essentially
determined by the gravitation and radiation pressure by the Sun.
The trajectories of particles, subject to the gravitational force, are
completely solved with the equations of motion, which is not the
case with the radiation pressure (Bishop and Chamberlain, 1989).

To describe correctly the exospheric population, we distinguish
three types of particles: escaping, ballistic and satellite (Chamberlain,
1963; Banks and Kockarts, 1973) (see Fig. 1).

– The escaping particles come from the exobase and have a posi-
tive mechanical energy: they can escape from the gravitational
influence of the planet with a velocity larger than the escape
velocity. These particles are responsible for the Jeans’ escape
(Jeans, 1921).

– The ballistic particles also come from the exobase but with a
negative mechanical energy, they are gravitationally bound to
the planet. They reach a maximum altitude and fall down on
the exobase if they do not undergo collisions.

– The satellite particles never cross the exobase. They also have a
negative mechanical energy but their periapsis is above the exo-
base: they orbit along an entire ellipse around the planet with-
out crossing the exobase. The satellite particles result from
ballistic particles undergoing few collisions mainly near the
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exobase. Thus, they do not exist in a collisionless model of the
exosphere.

Chamberlain (1963) proposed an approach to estimate the den-
sity of each population via Liouville’s theorem which states that
the distribution function remains constant along a dynamical tra-
jectory. A Maxwellian distribution function is assumed at the exo-
base and propagated to the upper layers via Liouville’s theorem.
The density for each population is then derived as the product be-
tween the barometric law and a partition function f (see Appendix
A.1)

nðrÞ ¼ nbarfðkÞ ¼ nðrexoÞek�kexo ðfbal þ fescÞ ð1Þ

where k is the ratio between the gravitational and thermal energies.

kðrÞ ¼ GMm
kBTexor

¼ vescðrÞ2

U2 ð2Þ

with r the distance from the center of the body, vesc(r) the escaping
velocity, U the most probable velocity for the Maxwellian distribu-
tion, G the gravitational constant, M the mass of the planet or the
satellite and Texo the temperature at the exobase considered con-
stant in the exosphere.

One problem remains: the satellite population cannot be prop-
erly estimated via Liouville’s equation. The last limit where the dis-
tribution function is known is indeed the exobase. However, the
satellite particles do not originate directly from the exobase. The
approximation for fsat (see Section A.1) given by Chamberlain
(1963), based on the Liouville theorem, cannot be rigorous and
most probably overestimates the importance of the satellite parti-
cles. Notably, this approach predicts that the satellite particle den-
sity dominates the ballistic and escaping densities at high altitudes
for several planets (see Appendix A.2 and Table 4). The only way to
estimate them rigorously is to solve their distribution function fs

thanks to the Boltzmann equation, which includes the rare colli-
sions existing in the exosphere. Most of the exospheric models
actually consider the exosphere as collisionless and are thus based
on the Chamberlain formalism including the ballistic and escaping
populations only, whereas some models include arbitrarily the sa-
tellite particles by including the fsat contribution.

Richter et al. (1979) used the Boltzmann equation to estimate
the satellite particles density in the Earth exosphere taking into
account the production and loss processes. They determined the
satellite population density in the first 2500 km above the exobase

and concluded that the satellite particles do not dominate over the
ballistic and escaping populations between 500 km and 2500 km.
However, they might at higher altitudes since, on Earth, the ratio
between the satellite component and the total density increases
with altitude.

In this paper, we propose to further investigate this approach
and apply it to other planetary exospheres (for Titan and Mars)
to estimate rigorously their satellite populations, based on recent
planetary data or models. The Section 2 will describe the model,
whereas the Section 3 will show the results on Earth with the same
conditions as Richter et al. (1979) in order to validate our code. The
Sections 4 and 5 will then show the respective results on Titan and
Mars. The limits and assumptions of the model will be discussed in
Section 6, before a comparative discussion in Section 7 and a con-
clusion on our study in the last section.

2. Description of the model

2.1. The theoretical approach

Both the ballistic and satellite particles describe an ellipse but
the periapsis rp of the ballistic particles is below the critical level
rc (exobase distance). The presence of satellite particles results
from the few collisions undergone by ballistic particles near the
exobase thus transforming their trajectories. The distribution func-
tion of the satellite particles may be solved via the Boltzmann
equation:

Dfsð~rs;~v sÞ
Dt

¼ Pþð~r;~vÞ þ P�ð~r;~vÞ ð3Þ

where P+ and P� are the local production and loss rates per unit of
phase space volume at the position vector~r with the velocity vector
~v .

Along an elliptic path, the Eq. (3) becomes:

Dfs

Dt
� @fs

@t
þ~v � ~rfs ¼

@fs

@t
þ v s

@fs

@s
¼ Pþ þ P� ð4Þ

with s the curvilinear abscissa on the ellipse and vs the associated
velocity. The local loss rate is directly proportional to the distribu-
tion function itself:

P� ¼ �fs � Ls ð5Þ

where Ls is the net loss rate per satellite particle. Finally, we obtain,
in the stationary case (@/@t = 0):

vs
dfs

ds
¼ Pþ � fs:Ls ð6Þ

The integro-differential Boltzmann equation is reduced to a simple
differential equation. To solve it, we suppose that the production
rate of satellite particles depends only on the ballistic particles
and not on other satellite particles suffering collisions, the satellite
population being negligible in the first kilometers above the exo-
base. This gives:

fsð~r;~vÞ¼exp �
Z s

s0

L0s
v 0s

ds0
� �

fsð~r0;~v0Þþ
Z s

s0

Pþ
0

s exp
Z s0

s0

L00s
v 00s

ds00
 !

ds0

v 0s

" #

ð7Þ

where fsð~r0;~v0Þ is the satellite distribution function at the curvilin-
ear abscissa s0 and fsð~r;~vÞ the satellite distribution function at the
curvilinear abscissa s. After one revolution around the planet, the
satellite particles return to their original position ð~r0;~v s0Þ.

fsð~r0;~v0Þ¼exp �
I

L0s
v 0s

ds0
� �

fsð~r0;~v0Þþ
I

Pþ
0

s exp
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s0
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v 00s

ds00
 !

ds0
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" #

ð8Þ
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Fig. 1. Three types of trajectories for the exospheric particles: escaping (dotted
line), ballistic (o) and satellite particles (+).
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