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a b s t r a c t

The classical Öpik theory provides an estimate of the collision probability between two bodies on bound,
heliocentric or planetocentric orbits under restrictive assumptions of: (i) constant eccentricity and incli-
nation, and (ii) uniform circulation of the longitude of node and argument of pericenter. These assump-
tions are violated whenever either of the orbits has a large inclination with respect to the local Laplace
plane or large eccentricity, and their motion is perturbed by an exterior (tidal) gravitational field of a pla-
net or the Sun. In this situation, known as the Lidov–Kozai regime, the eccentricity and inclination values
exhibit large and correlated oscillations. At the same time, the longitude of node and the argument of
pericenter may have strongly nonlinear time evolution, with the latter being even bound to a small inter-
val of values. Here we develop a new Öpik-type collision probability theory which is valid even for highly
inclined and/or eccentric orbits of the projectile. We assume that the orbit of the target is circular and in
the local Laplace plane. Such a generalized setting is necessary, as an example, to correctly estimate the
terrestrial impact fluxes of sporadic micrometeoroids on high-inclination orbits (notably those from the
toroidal source and the associated helion and anti-helion arcs).

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in planetary science require to determine the
collision probability of two bodies residing on the Keplerian orbits
with the same focal point. Here we consider the important case in
which the collision probability needs to be evaluated in a statistical
sense for a large population of bodies. In this case, it is often useful
if the probability is averaged over the secular orbital timescale.

The standard theory, used and extended by many researchers,
was developed by Öpik (1951) (see also Öpik, 1976; Wetherill,
1967; Greenberg, 1982). In his original formulation, Öpik assumed
that the target on a circular orbit is bombarded by a population of
bodies on orbits with fixed eccentricity and inclination values.

Öpik’s theory was generalized to the case of an eccentric orbit of
the target by Wetherill (1967) and Greenberg (1982). A different
generalized method was developed by Kessler and Cour-Palais
(1978) (see also Kessler, 1981). This more geometrical approach
based on the evaluation of the probability density distribution
has found a number of applications in planetary science (e.g., Steel
and Baggaley, 1985; Steel and Elford, 1986; Sykes, 1990).

In these standard collisional theories, the orbital eccentricity e
and inclination i is assumed to be constant during the secular evo-
lution cycle. This is appropriate for small e and i values, where e

and i are roughly time-invariant. However, some problems in plan-
etary science require a method that is valid for high eccentricities
and/or high inclinations, where the effects of the Lidov–Kozai res-
onance can be important (e.g., Lidov, 1961, 1962; Kozai, 1962;
Morbidelli, 2002).

For example, the dust particles released from long-period
comets can be an important component of the zodiacal cloud. If
so, it would be important to calculate their impact rates on the
Earth (and relate the results to meteor observations), Earth-bound
detectors and spacecrafts. Other applications can be found in stud-
ies of planetary impact rates in the early Solar System when small
bodies were stochastically driven to high-e and -i orbits. In these
examples, the secular evolution of orbits clearly violates the
assumption of the standard Öpik theory, because e and i are
affected by the Lidov–Kozai cycles.

Here we generalize the Öpik theory to account for the
Lidov–Kozai cycles of high-i and -e orbits. After mathematical pre-
liminaries in Section 2, we generalize the collisional probability
theory in Section 3. In Section 3.3, we test the generalized theory
by comparing it with direct N-body integrations of orbits. Conclu-
sions are given in Section 4.

2. Mathematical preliminaries

We start by introducing mathematical concepts and notation
that will be used throughout the paper. Assume a particle on an
elliptic heliocentric orbit described using an osculating set of
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Keplerian elements: semimajor axis a, eccentricity e, inclination i,
longitude of node X, argument of pericenter x and true anomaly
f. The angles i, X and x are defined with respect to a chosen inertial
frame (X,Y,Z).1 The orbit intersects the (X,Y) reference plane in
ascending and descending nodes, where f = f0 � �x and
f = f0 � p �x, respectively. Denote a0 the heliocentric distance at
either of the two intersections. Introduce a local reference basis
(er,e/,ez) of three orthonormal vectors with the origin at the ascend-
ing or descending node, such that er is directed in the radial direc-
tion, e/ in the longitude direction and ez along the Z axis.2

The heliocentric position vector r describing the elliptic orbit of
the particle reads

rðf Þ ¼ rðf Þ½a cosðxþ f Þ þ b sinðxþ f Þ�; ð1Þ

with r(f) = ag2/(1 + ecos f), g2 = 1 � e2, and unit vectors aT = (cosX, -
sinX,0) and bT = (�cos isinX, cos icosX, sin i). At the ascending
node we have a = er and b = cos ie/ + sin iez, while at the descending
node a = �er and b = �cos ie/ + sin iez. Expanding r(f) near the origin
in the local (er,e/,ez) system (i.e., near the respective nodal intersec-
tion with the (X,Y) reference plane), we obtain r(f) = a0er + dr with

dr ¼ a0A1 df þ a0

2
A2 df 2 þOðdf 3Þ; ð2Þ

where df is infinitesimal increment of the true anomaly with re-
spect to the intersection value f0. Eq. (2) locally describes particle’s
elliptic orbit, with df being an affine parameter having values suit-
ably close to zero. The first term is the crudest rectilinear approxi-
mation, while the second term describes the local curvature of the
elliptic orbit. The first- and second-order vectorial coefficients read
(upper sign for the ascending node intersection and lower sign for
the descending node intersection)

A1 ¼ �
e sinx

P
er þ ðcos ie/ � sin iezÞ; ð3Þ

A2 ¼ �2 1� 3
2P
þ g2

P2

� �
er � 2

e sin x
P
ð� cos ie/ þ sin iezÞ; ð4Þ

where P = ag2/a0 and g2 = 1 � e2.
Consider now an observer moving on a circular heliocentric

orbit with radius a0 in the (X,Y) reference plane. Eq. (2) may be also
used to describe its orbit near the respective nodal intersection
with the eccentric orbit, with Acirc

1 ¼ e/ (henceforth also the apex
direction), Acirc

2 ¼ �er and df = dfcirc, a differential in the observer’s
longitude. Denote Vcirc the orbital velocity of the observer (given by
the third Kepler law) and V the relative velocity of the particle with
respect to the observer. It is convenient to introduce a scaled value
v of the relative velocity, namely v = V/Vcirc, and parametrize the
complete relative vector vT = (vr,v/,vz) = v(cosbsin‘,cosbcos‘, sinb)
v/,vz) = v(cosbsin‘,cosbcos‘, sinb) with a longitude ‘ and a lati-
tude b of the radiant seen by the observer (henceforth, ‘ is mea-
sured from the apex direction and increases toward local radial
direction in our notation). We also note that our choice makes v
point toward the radiant from which the observer sees the particle
impact.

The velocity components (vr,v/,vz) may be easily obtained from
the linear term in (2), namely by using

v ¼ e/ �
1

Vcirc

dr
dt

� �
f¼f0

¼ e/ � A1

ffiffiffi
P
p

: ð5Þ

We thus obtain

e cos x ¼ �ðP � 1Þ; ð6Þ
e sinx ¼ �

ffiffiffi
P
p

v r ; ð7Þffiffiffi
P
p

cos i ¼ 1� v/; ð8Þffiffiffi
P
p

sin i ¼ �vz; ð9Þ

where the upper sign holds for the ascending node intersection and
the lower sign for the descending node intersection. Here the first
formula (6) is simply the geometric condition of intersection at
heliocentric distance a0 (as stated above), and the next three formu-
las (7)–(9) specify the radiant location and impact velocity (in units
of Vcirc). Obviously, our (vr,v/,vz) are closely related, in fact identical,
to the standard velocity components (Ux,Uy,Uz) introduced in the
Öpik theory (see, e.g., Öpik, 1951, 1976).

Finally, it will be useful to rewrite beforehand Eq. (6) using the
non-singular variables k = ecosx and h = esinx and parameter
a = a0/a. In the (k,h) plane the nodal intersection condition (6) reads

k� a
2

� �2
þ h2 ¼ 1� aþ a2

4
; ð10Þ

which is simply an equation of a circle displaced by ±a/2 on the k-
axis for the ascending, resp. descending, node and radius equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� aþ a2=4
p

.

3. Öpik collision probability approach

In the Öpik approach, the collision probability of a particle with
a target is composed of two independent parts: (i) probability P1

that during the secular cycle of the particle orbital elements its
heliocentric node is close to the target’s circular orbit (such that
their distance can be small enough), and (ii) probability P2 that
the target is close to the nodal intersection of the particle orbit.
A product of these statistically independent partial probabilities
provides the total probability of impact per revolution of the parti-
cle: P = P1P2. Dividing this value by the orbital period of the particle
then yields total probability per unit of time (this is because we as-
sume an equilibrium distribution of particles along the impacting
orbit). Obviously, in this way the resulting collision probability is
a long-term averaged value or, equivalently, a population averaged
value for a large population of particles in steady-state.

Because we keep the assumption of the circular motion of the
target and the rectilinear representation of the particle motion
near the nodal configurations (first term in Eq. (2)), analysis of P2

is the same as in Öpik (1951). In particular, assuming the target
with radius R on a circular heliocentric orbit with radius acirc, we
have

P2ða; e; iÞ ¼
R

4acirc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� Tða; e; iÞ
2� Fða; e; iÞ

s
; ð11Þ

with

Tða; e; iÞ ¼ acirc

a
þ 2

ffiffiffiffiffiffiffiffiffi
a

acirc

r
g cos i; ð12Þ

Fða; e; iÞ ¼ acirc

a
þ a

acirc
g2 cos2 i: ð13Þ

However, to compute P1, Öpik’s assumed constant values of e and i
and uniform circulation of x. This is an acceptable approximation
for low inclination and low eccentricity orbits, but it fails when
either of or both these elements are large. Our goal is to extend
determination of P1 for orbits with arbitrary inclination and eccen-
tricity values.

1 We assume i – 0, otherwise a non-singular set of orbital elements would be
needed. In order to keep a close similarity in notation to the works of Öpik (1951) and
Wetherill (1967) we only consider the non-planar case.

2 Note that the er and e/ vectors at the descending node are opposite to their values
in the descending node, and vice versa, in our definition.
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