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We consider the solid–solid interactions in the two body problem. The relative equilibria have been
previously studied analytically and general motions were numerically analyzed using some expansion of
the gravitational potential up to the second order, but only when there are no direct interactions between
the orientation of the bodies. Here we expand the potential up to the fourth order and we show that
the secular problem obtained after averaging over fast angles, as for the precession model of Boué and
Laskar [Boué, G., Laskar, J., 2006. Icarus 185, 312–330], is integrable, but not trivially. We describe the
general features of the motions and we provide explicit analytical approximations for the solutions. We
demonstrate that the general solution of the secular system can be decomposed as a uniform precession
around the total angular momentum and a periodic symmetric orbit in the precessing frame. More
generally, we show that for a general n-body system of rigid bodies in gravitational interaction, the
regular quasiperiodic solutions can be decomposed into a uniform precession around the total angular
momentum, and a quasiperiodic motion with one frequency less in the precessing frame.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider here two rigid bodies orbiting each other. The
main purpose of this work is to determine the long term evolu-
tion of their spin orientation and to a lower extent, the orientation
of the orbital plane. Examples of such systems are binary asteroids
or a planet with a massive satellite.

If the two bodies are spherical, then the translational and the
rotational motions are independent (e.g. Duboshin, 1958). In that
case, the orbit is purely Keplerian and the proper rotation of the
bodies are uniform. General problems with triaxial bodies are more
complicated, and usually non-integrable. Even formal expansions
of the gravitational potential or the proof of their convergence can
be an issue (Borderies, 1978; Paul, 1988; Tricarico, 2008). In some
cases, especially for slow rotations close to low order spin–orbit
resonances, the spin evolution of rigid bodies of irregular shape
can be strongly chaotic (Wisdom et al., 1984; Wisdom, 1987), but
we will not consider this situation in the present paper where we
focus on regular and quasiperiodic motions.

Stationary solutions of spin evolution are known in the case of
a triaxial satellite orbiting a central spherical planet (Abul’naga and
Barkin, 1979). In their paper, Abul’naga and Barkin used canonical
coordinates, based on the Euler angles, to set the orientation of the
satellite. On the contrary, in 1991, Wang et al. also studied relative
equilibria but with a vectorial approach that enabled them to ana-
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lyze easily the stability of those solutions. For a review of different
formalisms that can be used in rigid body problems, see Borisov
and Mamaev (2005).

The vectorial approach turned out to be also powerful for the
study of relative equilibria of two triaxial bodies orbiting each
other (Maciejewski, 1995). General motions of this problem were
studied by Fahnestock and Scheeres (2008) in the case of the typ-
ical binary asteroid system called 1999 KW4. For that, the authors
expanded the gravitational potential up to the second order only.
In this approximation, there is no direct interaction between the
orientation of the two bodies. Ashenberg gave in 2007 the expres-
sion of the gravitational potential expanded up to the fourth order
but did not study the solutions.

In Boué and Laskar (2006) we gave a new method to study
the long term evolution of solid body orientations in the case of a
star–planet–satellite problem where only the planet is assumed to
be rigid. This method used a similar vectorial approach as Wang
et al. (1991), plus some averaging over the fast angles. We showed
that the secular evolution of this system is integrable and provided
the general solution.

In the present paper, we show that the problem of two triax-
ial bodies orbiting each other is very similar to the star–planet–
satellite problem and thus can be treated in the same way.

In Section 2, we compute the Hamiltonian governing the evo-
lution of two interacting rigid bodies. The gravitational potential
is expanded up to the fourth order and averaged over fast angles.
The resulting secular Hamiltonian is a function of three vectors
only: the orbital angular momentum and the angular momenta of
the two bodies.
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In a next step (Section 3), we show that the secular problem
is integrable but not trivially (i.e. it cannot be reduced to a scalar
first order differential equation that can be integrated by quadra-
ture). The general solution is the product of a uniform rotation of
the three vectors (global precession around the total angular mo-
mentum) by a periodic motion (nutation). We prove also that in
a frame rotating with the precession frequency, the nutation loops
described by the three vectors are all symmetric with respect to
a same plane containing the total angular momentum. We then
derive analytical approximations of the two frequencies of the sec-
ular problem with their amplitudes. These formulas need averaged
quantities that can be computed recursively. However we found
that the first iteration already gives satisfactory results.

In Section 5, we consider the general case of a n-body system
of rigid bodies in gravitational interaction, and we demonstrate
that the regular quasiperiodic solutions of these systems can, in
a similar way, be decomposed into a uniform precession, and a
quasiperiodic motion in the precessing frame.

Finally, we compare our results with those of Fahnestock and
Scheeres (2008) on the typical binary asteroid system 1999 KW4.
We show that their analytical expression of the precession fre-
quency corresponds to the simple case of a point mass orbiting
an oblate body treated in Boué and Laskar (2006). We then in-
tegrate numerically from the full Hamiltonian, an example of a
doubly asynchronous system where the Fahnestock and Scheeres
(2008) expression of the precession frequency does not apply. We
compare the results with the output of the averaged Hamiltonian
and with our numerical approximation and show that they are in
good agreement.

2. Fundamental equations

We are considering a two rigid body problem in which the in-
teraction is purely gravitational with no dissipative effects. Let m1
and m2 be the masses of the two solids. Hereafter the mass m2
is called the satellite or the secondary and the mass m1 the pri-
mary. It should be stressed that this notation does not imply any
constraint on the ratio of the masses which can even be equal to
one.

The configuration of the system is described by the position
vector r of the satellite barycenter relative to the primary barycen-
ter and their orientation expressed in an invariant reference frame.
The orientations are given by the coordinates of the principal axes
(I 1, J 1, K 1) and (I 2, J 2, K 2) in which the two inertia tensors, re-
spectively I1 and I2, of the primary and of the secondary are
diagonal [I1 = diag(A1, B1, C1) and I2 = diag(A2, B2, C2)].

The Hamiltonian of this problem can be split into

H = HT + H E + H I , (1)

where H T is the Hamiltonian of the free translation of the re-
duced point mass β = m1m2/(m1 +m2), H E describes the free rigid
rotation of the two bodies and H I contains the gravitational inter-
action.

The Hamiltonian of the free point mass is

HT = r̃2

2β
, (2)

where r̃ = β ṙ is the conjugate momentum of r.
Let G1 and G2 be respectively the angular momentum of the

primary and of the satellite. The Hamiltonian of the free rotation
is

H E =
t G1 I −1

1 G1

2
+

t G2 I −1
2 G2

2
, (3)

where the superscript t in t x or t A denotes the transpose of any
vector x or matrix A. It can be expressed in terms of the principal
bases of the two bodies as follows

Fig. 1. Coordinates definition.
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The interaction between the two solid bodies is the following
double integral

H I = −
∫ ∫ G dm1 dm2

‖r + r2 − r1‖ , (5)

where r1 and r2 are respectively computed relative to the pri-
mary and satellite barycenters (cf. Fig. 1) and describe the two
volumes. This part of the Hamiltonian can be expanded in terms
of Legendre polynomials and will be written as a function of
(r, I 1, J 1, K 1, I2, J 2, K 2) in Section 2.3.

2.1. Equations of motion

The full Hamiltonian is written in the non-canonical coordi-
nates (r, r̃, I 1, J 1, K 1, G1, I 2, J 2, K 2, G2). Thus, although the com-
ponents (r, r̃) keep the standard symplectic structure (I 1, J 1,

K 1, G1) on the one hand and (I 2, J 2, K 2, G2) on the other hand
possess the Euler–Poisson structure which leads to the following
equations of motion (Borisov and Mamaev, 2005)

ṙ = ∇r̃ H, ˙̃r = −∇r H,

Ġ = ∇ I H × I + ∇ J H × J + ∇K H × K + ∇G H × G,

İ = ∇G H × I, J̇ = ∇G H × J , K̇ = ∇G H × K . (6)

We choose these non-canonical coordinates instead of symplectic
ones because of the simplicity of the resulting equations which
already resemble equations of precession.

2.2. First simplification

In the previous paragraphs, the Hamiltonian contains the three
vectors of the principal frame (I , J , K ) of each body. Nevertheless,
only two vectors per solid are necessary insofar as the third can
be expressed as the wedge product of the other two. We choose to
keep I and K .

The Hamiltonian of the free rotation of the two rigid bodies can
be rewritten as follows

H E = G2
1
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