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a b s t r a c t

The alteration of the spin states of small Solar-System bodies by the YORP thermal effect has recently
become a plausible and, for some, the favorite candidate for the formation of binary asteroids. The idea
is that if an asteroid is slowly spun up to a state where some strength measure is exceeded; it can no
longer remain rigid and adjusts to a new configuration. Such a process might involve global fission, global
shape changes without fission, or gradual surface mass loss with subsequent mass re-accumulations
forming a secondary body.

Here I analyze the changes in the shape, spin, and state during slowly increasing angular momentum of
rubble-pile, self-gravitating, homogeneous ellipsoidal bodies undergoing homogeneous motions. I use, as
appropriate for rubble-pile asteroids, the strength models of granular materials with zero tensile strength
(cohesionless but arbitrary dilatancy); those are characterized by the ‘‘angle of friction” material con-
stant. There are distinct limit spins depending on that angle of friction and the shape, which were previ-
ously presented [Holsapple, K.A., 2001. Icarus 154, 432–448; Holsapple, K.A., 2004. Icarus 172, 272–303].
Here the deformations and state changes when the angular momentum is slowly increased from that of a
limit spin state are determined, to study the YORP processes. When a body is at its limit spin and the
angular momentum increases further, the body deforms in a unique way along definite paths in the ellip-
soidal shape space: it evolves as an elongating shape with an increasing rotational inertia, which in most
cases produces a decreasing spin. I give exact analytical solutions for those shape and spin histories, as
well as the histories of the mass density, angular momentum and energy. Comparison to other
approaches is made.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Yarkovsky–O’Keefe–Radzievskii–Paddack, ‘‘YORP” effect
(Rubincam, 2000) is a process that can modify the spin of small
asteroids by the absorption and re-radiation of heat from the
Sun. That process has recently become a popular candidate for
the formation of binary asteroids.

YORP is a very slow process, typically measured in tens of thou-
sands, millions, or even hundreds of millions of years (Bottke et al.,
2006). For example, Durech et al. (2008a) measured the rotational
acceleration for the small 1.7 km Asteroid 1862 Apollo as 5.5 �
10�8 rad/d2 which is about 10�17 rad/s2. Durech et al. (2008b) re-
port a probable value of 1.15 � 10�8 rad/d2 for the very elongated
Asteroid Geographos. The limit spin rates of asteroids are on the
order of 10�3 rad/s, so, at that acceleration, achieving the limit spin
starting from a zero spin would require a time of 1014 s (3 million
years). Such a process is quasi-static, and characterized by a very
slowly changing spin or angular momentum. That fact justifies a
quasi-static analysis in which all accelerations, other than those

of a steady but slowly changing spin, are ignored. A future paper
will consider more rapid spin-ups and fully dynamic processes.

There are three distinctly different approaches to this problem
in the literature. The approach here is a continuum deformation
analysis, which requires that any granular structure is small com-
pared to the body size. A great advantage of this approach is that
the well developed and characterized models of soil and rock
mechanics used in terrestrial studies can be applied. Then the the-
ory is governed by sets of partial differential equations: the balance
of mass, momentum and energy. In principle a computer code
could solve the general non-homogeneous case; that is a popular
approach for bodies of any shape and for those where the self-grav-
ity can be ignored. But no one has done that yet for a spinning, self-
gravitating continuum body.

But here purely analytical solutions are presented. In order to
get an analytical solution the motions are restricted to those that
are uniform over the body: so-called homogeneous motions. Then
the partial differential equations reduce to a set of ordinary differ-
ential equations that can be integrated. That simplification ex-
cludes processes like deformation localization, and mass
shedding. But it does provide a good analytical end-case for the
physics and for numerical studies. The theory here uses the same
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assumptions about the motions as in the classical literature by
Chandrasekhar (1969) and others for fluid bodies, but extends
those results to the soil mechanics models for solid bodies rather
than just for incompressible fluids.

A very different theoretical approach is given by Scheeres (2007,
2009); he looks at the kinematics, equilibrium and stability of indi-
vidual rigid bodies initially resting upon each other (as for a con-
tact binary asteroid) but does not consider internal deformations
of those pieces. Of course that assumes a binary or collection of fi-
nite bodies to start with, but his is a useful approach to determine
their equilibrium, stability and subsequent evolution.

In an intermediate approach, Walsh et al. (2008) present a code
numerical study using an ‘‘N-body” code of a rubble-pile asteroid
being slowly spun up due to the YORP effect. The N-body approach
models the asteroid as a large number (�1000 in that case) of
vibrating spherical particles with gravitational interactions, but
no inter-particle bonding.1 To first order, that is an extension of ri-
gid-body analyses to a large number of particles, but then they also
model the particle interactions in a simple way using a coefficient of
restitution in each contact to account for energy loss mechanisms
when the spheres collide. They find that the breakup outcomes are
not strongly affected by the value used for that coefficient, although
its value does influence subsequent re-accumulation. This approach
has the great advantage of being able to model arbitrary deforma-
tional changes including mass loss and subsequent re-accumula-
tions, but suffers from the simplicity of the particle interaction
modeling.

Walsh et al. (2008) imposed an increasing spin applied to an ini-
tially ellipsoidal body. They find that the increasing spin, of both
initially spherical and initially prolate bodies,2 causes the bodies
to adjust their shape and become oblate, and can cause mass shed-
ding of particles from the equator which can subsequently re-form
into a bound satellite. But, as is true for any code approach, they
must track each calculation as a separate problem. The analytical ap-
proach given here has the advantage of determining the results as
specific algebraic functions of the problem parameters.

Holsapple (2001, 2004) previously used the continuum model
for homogeneous, spinning, self-gravitating bodies and determined
the quasi-static spin limits of ellipsoidal asteroids. His analyses ex-
tended to solid bodies the classical studies of the equilibrium limits
for spinning fluid bodies – the well-known Maclaurin and Jacobi
shapes for fluids – and those classical fluid results were obtained
as a special case of his general approach. He used the well-known
Mohr–Coulomb model continuum failure model of soil mechanics.
Holsapple (2001, 2004) derived exact solutions for the envelopes of
spin limits as a function of the ellipsoidal shape and the angle of
friction of the Mohr–Coulomb failure model for the body.

Here the continuum approach results are presented for the
deformation and state histories during a quasi-static, slowly
increasing angular momentum of asteroids. The results found here
are not the same as the Walsh et al. (2008) code results using the
rubble-pile N-body approach. Here, consistent with the homoge-
neous motion assumption, it is found that any ellipsoidal body will
adjust its shape smoothly before achieving a spin sufficient for
equatorial mass loss. With imposed increasing angular momen-
tum, initially oblate bodies (including initially spherical ones) re-
main oblate and become more flattened, but bodies beginning
with a general ellipsoidal or prolate shape do not become oblate.
And, surprisingly, it is found that the term ‘‘spin-up” is usually

not appropriate at the limit states. For spins below the limit spins,
where the body remains rigid, the YORP effect can indeed increase
the spin rate. But at the limit spin states where deformations are
possible, the deformation elongates the body and increases the ro-
tary inertia sufficiently that in most cases an increasing angular
momentum results in a decreasing spin rate.

The interpretation of these results is provided in the final sum-
mary at the end of the paper.

2. The theory

2.1. Gravity, potential energy and body forces

I follow mainly the notation of Chandrasekhar (1969), used also
in Holsapple (2001, 2004), together with common notation of con-
tinuum mechanics (e.g. Truesdell and Toupin, 1960). A homoge-
neous spinning self-gravitating ellipsoidal body has the lengths
of the semi-axes labeled in order from largest to smallest as
b a b c c. The aspect ratios, the ratios of the semi-axis lengths,
are denoted as

a ¼ c
a
; b ¼ b

a
ð1Þ

so that always a 6 b.
The gravitational potential is given in the x ¼ x y z½ �T coordi-

nate system aligned with the ellipsoid’s principal axes as

U ¼ pqGð�A0 þ Axx2 þ Ayy2 þ Azz2Þ ð2Þ

where G is the gravitational constant and q is the uniform mass den-
sity. The Ax, Ay, Az terms can be given for an ellipsoidal body in terms
of standard incomplete elliptic integrals (e.g. Chandrasekhar, 1969,
Chapter 3, Eqs. (33)–(35)); or, in the special cases of a prolate or
oblate body, in terms of elementary trigonometric forms. These
gravitational terms are related by

Ax þ Ay þ Az ¼ 2 ð3Þ
Axa2 þ Ayb2 þ Azc2 ¼ A0 ð4Þ

The three Ai (using an index notation) are non-dimensional and
depend solely on the aspect ratios: Ai ¼ Aiða; bÞ. Subsequently,
using Eq. (4), A0 can be put into the dimensional form

A0 ¼ a2FGða;bÞ ð5Þ

which defines a specific non-dimensional function FGða; bÞ of the
shape parameters. The gravity body-force components are given
from the potential function in an index notation as

bi ¼ �
@U
@xi
¼ �2pqGAixi ðwith no sum on iÞ ð6Þ

and integrating the U of Eq. (2) gives the potential energy of the
body as

PE ¼ �2
5
pqGMA0 ð7Þ

where the mass of the ellipsoidal body M is given as

M ¼ 4p
3

qabc

During any process, balance of mass requires that

d
dt
ðqabcÞ ¼ 0 ð8Þ

It will be useful to define a ‘‘body force” tensor B by taking its
matrix components in the principal axis coordinate system as

1 Although there remains the interlocking of spheres providing a shear strength
under increasing pressure, just as in the continuum Drucker–Prager soil model used
here.

2 Although purely smooth symmetrical shapes such as spheres or ellipsoids cannot
have a YORP effect, slight surface roughness is sufficient to induce one (Rubincam,
2000).
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