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We present a new 1-dimensional thermal evolution code suited for small icy bodies of the Solar System,
based on modern adaptive grid numerical techniques, and suited for multiphase flow through a porous
medium. The code is used for evolutionary calculations spanning 4.6 × 109 yr of a growing body made
of ice and rock, starting with a 10 km radius seed and ending with an object 250 km in radius. Initial
conditions are chosen to match two different classes of objects: a Kuiper belt object, and Saturn’s moon
Enceladus. Heating by the decay of 26Al, as well as long-lived radionuclides is taken into account. Several
values of the thermal conductivity and accretion laws are tested. We find that in all cases the melting
point of ice is reached in a central core. Evaporation and flow of water and vapor gradually remove the
water from the core and the final (present) structure is differentiated, with a rocky, highly porous core
of 80 km radius (and up to 160 km for very low conductivities). Outside the core, due to refreezing of
water and vapor, a compact, ice-rich layer forms, a few tens of km thick (except in the case of very
high conductivity). If the ice is initially amorphous, as expected in the Kuiper belt, the amorphous ice
is preserved in an outer layer about 20 km thick. We conclude by suggesting various ways in which the
code may be extended.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Whether or not liquid water could have been present in small—
presently icy—bodies of the Solar System during their early stages
of evolution, and if so, under which conditions, is still debated. The
question whether and to what extent are these bodies (comets,
Kuiper belt objects and icy satellites of the distant planets) pris-
tine bodies that hold clues to the formation of the Solar System is
also still open. And finally, would it be possible for such bodies to
have had liquid cores, but at the same time to have preserved their
outer layers in pristine form? These are some of the questions that
have prompted the development of increasingly elaborate thermal
evolution models, which are steadily growing in number. The effort
is twofold: understanding and providing a mathematical formula-
tion of these processes on the one hand, and incorporating them
in numerical simulations of structure and evolution, on the other.

Models show that incorporating radiogenic heating by short-
lived radionuclides, such as 26Al, provides sufficient energy for
melting the ice and even increasing the water temperature to
boiling point (e.g., Merk and Prialnik, 2006). These works, span-
ning a period of over 25 years, have been recently reviewed by
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Podolak and Prialnik (2006), Jewitt et al. (2007) and McKinnon
et al. (2007). The drawback of these studies is that they do not
consider the three phases of H2O in a complete and consistent
manner. In particular, water is assumed to be produced when the
ice temperature exceeds 273 K, but its possible evaporation or flow
through the porous medium is ignored. It is thus unclear whether
water accumulates in the hot central part of the body, or evapo-
rates, or else flows into colder regions and refreezes. The purpose
of the present study is to follow the evolution of the liquid water
and its possible migration through the pores in order to derive the
structure of the body and its variation with depth.

Mathematical modeling of the evolution of any small body
made of ice and dust (rock), involves a system of coupled nonlin-
ear partial differential equations (PDE) and associated initial and
boundary values. In general, the system does not have a closed
analytic solution, and thus one has to resort to numerical integra-
tion techniques. The differential equations are replaced by finite-
difference equations on a grid of points that cover the range of
integration. Time is divided into time steps. Since the equations
have to satisfy boundary conditions at two different points of the
spatial grid, we are faced with a two-point boundary value prob-
lem. The numerical solution requires relaxation techniques that
demand several iterations. An iteration consists of adjusting the
values of a desired function on all the grid points simultaneously,
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until they successively satisfy the finite-difference equations and
the prescribed boundary conditions to within a specified accu-
racy. The procedure is repeated at each time step. The relaxation
method works best when the solution is smooth both in time and
in space. But, while time steps may be adjusted as required by the
evolutionary processes involved, the spatial grid is predetermined.
This gives rise to severe computational problems.

First, if the body under consideration is growing or shrinking,
the range of integration is obviously not fixed, but must be con-
tinually changed. The rough technique, often used, of adding or
removing grid points introduces significant numerical noise and re-
quires additional ad-hoc assumptions. Moreover, steep gradients—
of pressure and temperature—arise close to the surface, where
the solar energy is absorbed. The surface layer, however, is soon
eroded by sublimation of ice and drag of the dust embedded in
it. Since near the surface grid intervals are normally many orders
of magnitude smaller than in the deep interior, this means that
a thick outer layer must be divided at the outset into very small
intervals. Not only will this affect the accuracy of the numerical
solution, but the resulting large number of grid points will render
the computation time prohibitively large (since matrix inversion is
required at each iteration of each time step). This difficulty may be
circumvented by implementing a moving boundary technique.

Secondly, phase transition fronts, which are usually very thin,
i.e., involve sharp gradients, move through the grid as the body
evolves. Thus a suitable grid at a given time, will cease to be so
at a later stage. The allocation of grid points must therefore be
done dynamically. To ensure a smooth solution of the equations,
it is not sufficient to adjust zoning occasionally, after the system
has converged, but rather during the relaxation process itself. Such
adaptive zoning may be accomplished by automatic allocation of
grid points. Essentially, it requires an additional equation (ordinary
or differential) that formulates mathematically the constraints im-
posed on the grid. For example, spacing must be such that the
temperature difference between two neighboring points does not
exceed a fixed fraction of the mean.

Adaptive grid techniques have been developed precisely for this
type of evolutionary problems, but have not yet been implemented
in modeling small Solar System bodies. In the computation of the
evolving structure of stars, such methods have been introduced
already a few decades ago (Eggleton, 1971). As in comets (icy bod-
ies), they are meant to overcome the difficulties of moving reaction
fronts, nuclear reaction fronts in stars being the analogues of subli-
mation or crystallization fronts in icy bodies. Although the physics
is radically different, these are essentially identical numerical prob-
lems. It is therefore to be expected that numerical methods that
have been successfully applied to modeling the evolution of stars
will be equally successful when applied to the evolution of comet
nuclei, Kuiper belt objects and icy satellites.

In Section 2 we describe in some detail the thermal evolu-
tion code, the physics involved and the numerical procedure. In
Section 3 we describe the results of long-term evolutionary calcu-
lations for two different prototypes: a Kuiper belt object and an
object with the physical characteristics of Enceladus in Saturn’s or-
bit around the Sun. Our focus will be on the internal structure of
these objects. A brief discussion and our conclusions follow in Sec-
tion 4.

2. The thermal evolution code

2.1. Assumptions and definitions

Consider a spherical body of mass M and radius R , composed
of consolidated water ice and dust grains that form a porous ma-
trix. Consider further four different phases of H2O—amorphous ice,
crystalline ice, liquid and vapor—and transitions between them. We

thus have 5 different substances (components) that we denote by
subscripts: d—dust; a—amorphous water ice; c—crystalline water
ice; �—liquid water; v—water vapor.

The porous medium properties are defined by the following pa-
rameters:

• Density ρ = mass per unit volume of the body (known also as
bulk density) is defined (locally) for each component, as well as
for the total:

ρ = ρd + ρa + ρc + ρ� + ρv . (1)

• Specific density � = mass per unit volume of solid material of
a particular species is taken from the literature for each of
the solid components, as well as for the liquid water, which is
assumed incompressible: �d , �a , �c and �� .

• Porosity ψ (dimensionless) = void volume per unit volume of
the body:

ψ = 1 −
(

ρd

�d
+ ρa

�a
+ ρc

�c

)
. (2)

• Saturation χ (dimensionless) = volume occupied by the liquid
per void volume:

χ = ρ�/��

ψ
. (3)

• Pore size rp (length) = average radius of a pore, which may be
supplied or derived from a given pore size distribution.

• Surface to volume ratio S (inverse of length) = total surface area
of pores per given bulk volume, may be calculated when a
model of the porous structure is supplied. Generally, S ∝ 1/rp .

We note that, given the properties of the different phases of
H2O and the transitions between them, it is possible to have co-
existence of amorphous and crystalline ice and of crystalline ice,
liquid water and vapor, but not simultaneous occurrence of all four
phases. It will prove useful to define a density ρw as

ρw = ρc + ρ� (4)

as the density of the “non-gaseous” phase of crystallized H2O. The
liquid fraction of ρw will be taken as a smoothed step function of
the temperature around the melting temperature Tm:

ρ� = ρw

1 + eβ(1−T /Tm)
, (5)

where β � 1 determines the steepness of the smoothed step func-
tion.

2.2. Conservation equations

2.2.1. Mass

∂ρa

∂t
= −λ(T )ρa, (6)

∂ρw

∂t
+ ∇ · J� = λ(T )ρa − qv , (7)

∂ρv

∂t
+ ∇ · Jv = qv , (8)

∂ρd

∂t
= 0 for the time being. (9)

Here λ(T ) = 1.05×1013e−5370/T s−1 is the rate of crystallization of
amorphous ice (Schmitt et al., 1989). Summation of Eqs. (6) to (9)
and substitution of (1) and (4) yields total mass conservation:

∂ρ

∂t
+ ∇ · (Jv + J�) = 0. (10)
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