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Shapes of the saturnian icy satellites and their significance
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Abstract

The sizes and shapes of six icy saturnian satellites have been measured from Cassini Imaging Science Subsystem (ISS) data, employing limb
coordinates and stereogrammetric control points. Mimas, Enceladus, Tethys, Dione and Rhea are well described by triaxial ellipsoids; Iapetus is
best represented by an oblate spheroid. All satellites appear to have approached relaxed, equilibrium shapes at some point in their evolution, but
all support at least 300 m of global-wavelength topography. The shape of Enceladus is most consistent with a homogeneous interior. If Enceladus
is differentiated, its shape and apparent relaxation require either lateral inhomogeneities in an icy mantle and/or an irregularly shaped core. Iapetus
supports a fossil bulge of over 30 km, and provides a benchmark for impact modification of shapes after global relaxation. Satellites such as
Mimas that have smoother limbs than Iapetus, and are expected to have higher impact rates, must have relaxed after the shape of Iapetus was
frozen.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Saturn’s system of satellites includes seven approximately
ellipsoidal objects and dozens of smaller ones with irregu-
lar shapes. The larger satellites display a wide range of sur-
face features, albedos, and mean densities. Ellipsoidal objects
may be equilibrium shapes determined by their mean den-
sity, mass distribution, and spin rates (Chandrasekhar, 1969;
Dermott, 1979), and as such their shapes may contain informa-
tion on their interiors. Likewise, departures from equilibrium
forms may reveal information on processes that complicate or
defeat tendencies to relax to equilibrium shapes. Cassini data
permit measurement of the shapes and masses of most of the
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ellipsoidal satellites sufficiently well to test models of the inte-
rior structure and the extent of relaxation.

In this work we first review the method of shape determina-
tion and evaluation. Next we report the measurement results for
six satellites (Fig. 1). We then examine how close each moon
is to an equilibrium shape. Then we view the results in toto,
and finally evaluate the significance of departures from equilib-
rium forms. We do not consider the largest satellite Titan, as
ISS cannot detect the satellite’s surface limb and shape mea-
surement requires a global network of control points, which are
not yet available.

2. Methods and data

2.1. Shape measurement

The overall shapes are found by measuring limb positions
in the ISS images. The process involves these steps: (1) Mea-

0019-1035/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2007.03.012

http://www.elsevier.com/locate/icarus
mailto:pct2@cornell.edu
http://dx.doi.org/10.1016/j.icarus.2007.03.012


574 P.C. Thomas et al. / Icarus 190 (2007) 573–584

sure the coordinates of limbs to ∼0.1 pixels in the images by
techniques described in Thomas et al. (1998). (2) Remove cam-
era distortions and scale limb positions to distance (now given
in km) from an approximate center in the image plane. (3) Test
if individual limbs are well fit by ellipses. (4) Combine views
from different orientations and test for the best-fit ellipsoid and
adjust centers in all the images. (5) Examine residuals from the
fit ellipsoid to see if an ellipsoid approximation is appropriate.
(6) Compare the ellipsoid to equilibrium forms.

The resolution of the images, in pixels/diameter, is suffi-
ciently good that most of a shape’s uncertainty derives from the
topography, i.e., the deviations from perfect ellipsoidal outlines.
Topography on the ellipse can bias centering and thus affect the
overall solution. The best images would be 360◦ limb arc views
which highly constrain the center. Views that include transits
across Saturn, or include Saturnshine on the dark limb, provide
data with more than 180◦ of arc and greatly reduce the cen-
tering uncertainties. In the absence of transits or Saturnshine,
low phase angles that provide at least 180◦ of arc are required.
Our techniques also require having the entire limb within one
ISS frame (1024 × 1024 pixels). The ellipsoid axes (a, b, c)
are found by comparing each image’s limb coordinates to the
predicted projected ellipse given the ellipsoid shape and cam-
era orientation and viewpoint relative to the object’s axes (see
(Dermott and Thomas, 1988) for ellipsoidal projections and
fitting ellipses). Residuals are the radial differences in pixels
between predicted and observed limb positions.

2.2. Evaluation of uncertainties

We use a formal method of uncertainty calculation, checked
by other estimates. The accuracy of the limb-finding soft-
ware can be evaluated by comparing results from images of
very different resolution. Enceladus images having better than
2 km/pixel scale and those with 16 km/pixel scale give mean

radii differing by 1.3 km. In combination with results from
very low-resolution data taken of the Galilean satellites (known
sizes), we conclude that uncertainties due to the limb-finding
algorithm are ∼0.1 pixels. The precision is frequently of order
0.05 pixels. For most fits this uncertainty is small compared to
the uncertainty introduced by roughness of the topography. To
determine the allowable range of solutions for a, b, c axes, the
residuals calculated in pixels were allowed to increase above
the minimum by an unrelated 0.1 pixels, equivalent to the mea-
surement uncertainty. The resulting range of allowed solutions
depends upon the image resolutions, limb roughnesses, and
spacing of the observed limbs around the object. Uncertainties
in (a − c) do not equal sums of the uncertainties in a and c be-
cause the solutions of the different axes are, to varying degrees,
linked in the various data sets. That is, the maximum (a − c) is
not necessarily the difference of the maximum a and the mini-
mum c allowed.

We have also used partial data sets to evaluate the uncertain-
ties of not employing all of the limb; these errors can cause fit
centers to vary, hence affect the fit axes. For Mimas, removing
about 10% of the data points from the ends of profiles changed
all three fit axes by 0.1 km. For Enceladus the data were also
split into those with pixel scales greater than 2 km and those less
than 2 km. Solutions with each set were within 0.2 km for all
axes, and mean radii varied by only 0.1 km. We conclude that
the formal errors listed in Table 1 are reasonable limits on the
values measured. The uncertainties reported in Table 1 are those
developed from our formal testing of residuals, and should be
regarded as 2-sigma uncertainties. They do not account for un-
certainties in the envelope correction; however, as noted in the
following paragraph, the practical effect of such uncertainties is
not significant to our main conclusions.

Because limbs are envelopes over the high topography, we
have applied corrections to account for hidden depressions
(crater interiors) so that the axes and mean radii are appropri-

Fig. 1. Ellipsoidal icy satellites with Hyperion as an example of an irregularly shaped satellite. From left: Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus.

Table 1
Satellite shapes

Satellite a b c Mean radius a − c (km) Im Data

Mimas 207.4 ± 0.7 196.8 ± 0.6 190.6 ± 0.3 198.2 ± 0.5 16.8 ± 0.6 18 11,187
Enceladus 256.6 ± 0.6 251.4 ± 0.2 248.3 ± 0.2 252.1 ± 0.2 8.3 ± 0.6 26 19,027
Tethys 540.4 ± 0.8 531.1 ± 2.6 527.5 ± 2.0 533.0 ± 1.4 12.9 ± 1.9 7 3003
Dione 563.8 ± 0.9 561.0 ± 1.3 560.3 ± 1.3 561.7 ± 0.9 3.5 ± 1.2 14 8184
Rhea 767.2 ± 2.2 762.5 ± 0.8 763.1 ± 1.1 764.3 ± 2.2 4.1 ± 2.1 22 17,402
Iapetus 747.4 ± 3.1 712.4 ± 2.0 735.6 ± 3.0 35.0 ± 3.7 39 10,316

Note. Here we use a, b, c (all in km) to denote the Saturn-facing, orbit-facing, and polar radii. Im: number of images used; Data: number of data points.
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