Icarus 201 (2009) 335-357

Contents lists available at ScienceDirect

Icarus

www.elsevier.com/locate/icarus

Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra

Björn J.R. Davidsson^{a,*}, Pedro J. Gutiérrez^b, Hans Rickman^{a,c}

^a Department of Physics and Astronomy, Uppsala University, Box 515, Regementsvägen 1, SE-75120 Uppsala, Sweden

^b Instituto de Astrofísica de Andalucía-CSIC, Aptd. 3004, 18080 Granada, Spain

^c PAN Space Research Center, Bartycká 18A, PL-00716 Warsaw, Poland

ARTICLE INFO

Article history: Received 14 August 2008 Revised 17 December 2008 Accepted 29 December 2008 Available online 13 January 2009

Keywords: Comet Tempel 1 Comets, nucleus Thermal histories Infrared observations Mineralogy

ABSTRACT

In this paper we analyze near-infrared thermal emission spectra of the spatially resolved nucleus of Comet 9P/Tempel 1 obtained by the NASA spacecraft Deep Impact. Maps of spectral reddening, the product X' between the beaming function and directional emissivity, as well as surface temperature are constructed. Thermophysical modeling is used to estimate the degree of small scale surface roughness and thermal inertia by detailed reproduction of the empirical temperature map. Mie and Hapke theories are used in combination with numerically calculated beaming functions to analyze the X' map and place constraints on composition and grain size of the surface material. We show that it is absolutely mandatory to include small scale surface roughness in thermophysical modeling of this object, since the resulting self heating is vital for reproducing the measured temperatures. A small scale self heating parameter in the range $0.6 \le \xi \le 0.75$ is common, but smoother areas where $0.2 \le \xi \le 0.3$ are also found. Contrary to models neglecting small scale surface roughness, we find that the thermal inertia of Comet 9P/Tempel 1 generally is high (1000–3000 Jm⁻² K⁻¹ s^{-1/2}), although it may be substantially lower (40-380 Jm⁻² K⁻¹ s^{-1/2}) in specific areas. We obtain a disk-averaged reddening of 3.5% kÅ⁻¹, with statistically significant local variations around that value on a $\pm 1.0\%$ kÅ⁻¹ level. Vast regions appear covered by small (\sim 0.1 µm) highly absorbing grains such as carbon or iron-rich silicates. Other regions appear dominated by somewhat larger (~ 0.5 µm) and/or less absorbing grains such as troilite or magnesium-rich silicates. Surface variations in reddening, roughness, thermal inertia, composition and/or grain size are moderately to strongly correlated to the locations of morphological units on the surface. The existence of morphological units with differing physical properties may be primordial, hence reflecting a diversity in the building block cometesimals, or resulting from evolutionary processes. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

The NASA *Deep Impact* (DI) encounter with Comet 9P/Tempel 1 on July 4, 2005 (A'Hearn et al., 2005) provided a rich and unique collection of data obtained with a range of instruments (Hampton et al., 2005). For example, the InfraRed spectrometer on the High-Resolution Instrument (HRI-IR) produced nucleus spectra in the wavelength range $1.04 \le \lambda \le 4.89 \ \mu\text{m}$ with a resolving power $200 \le \lambda/\Delta\lambda \le 800$. In 2×2 binning mode a data matrix is obtained with 512 wavelength bins for 256 spatial pixels. By exploiting spacecraft rotation and performing repeated imaging, 40×256 pixel scans could be produced, where each pixel represents a full spectrum. A single scan obtained during the flyby (#9000036) contains the entire visible side of the nucleus (resolved by ~1000 pixels) obtained 15,800 km from the comet, ~26 min prior to closest approach. This scan was used by Groussin et al. (2007) to produce the first 2D surface temperature map of a comet nucleus. By applying a thermophysical model to produce synthetic temperature maps and comparing these with the empirical data, Groussin et al. (2007) also concluded that the thermal inertia ${\cal I}$ of the nucleus must be very low, preferably ${\cal I}\leqslant 50~J\,m^{-2}\,K^{-1}\,s^{-1/2}.$

The analysis by Groussin et al. (2007) is an impressive and important first step towards a deeper understanding of the surface conditions of comets. However, certain assumptions have been made that potentially may bias the results and interpretations in a certain direction. For example, small scale surface roughness (i.e., nucleus topography on subpixel scales) has not been taken into account. Small scale surface roughness affects the properties of thermal emission spectra (hence the procedure used to estimate surface temperatures), as well as the thermophysical model needed to interpret those temperatures (inclusion of self heating). It can therefore not be excluded that conclusions regarding, e.g., the thermal inertia of the nucleus may have to be revised if small scale surface roughness is taken into consideration.

^{*} Corresponding author. Fax: +46 (0) 18 4715999.

E-mail addresses: bjorn.davidsson@fysast.uu.se (B.J.R. Davidsson), pedroj@iaa.es (P.J. Gutiérrez), hans.rickman@fysast.uu.se (H. Rickman).

^{0019-1035/\$ –} see front matter $\ \textcircled{0}$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.icarus.2008.12.039

Table 1

Description of all parameter symbols used in the paper.

a Grain radiussNoise in $I_{\rm th}$ relative to I_{λ} A Bolometric Bond albedosiSurface area of element i $A_{\rm nod}$ Modeled bolometric Bond albedotTime $A_{\rm v}$ Spectral Bond albedo integrated over V-band t_0 Time of solar cultiniation $A_{\rm flat}$ Projected flat area of rough terrainTTemperature $A_{\rm pit}$ Integrated surface area of pit interior ΔT Temperature difference $A_{\rm fough}$ Stope angle distribution function parameter V_1 Pit interior visibility switch A Slope angle distribution function parameter V_1 Pit interior visibility switch b Parameter in incomplete gamma function x Depth below comet surface $B_1(T)$ Planck function x Difference in X' $B_2(T)$ Speed of light in vacuum x'_4 Dimensionless depth below comet surface C Speed of light in vacuum x'_4 Difference in X' d_{co} Co-declination X'_4 Piffective indegrade emissivity d_{co} Go-declination X'_4 Piffective indegrade emissivity f Fraction of surface covered with pits y'_2 Volume emissivity factor f_1 reactor x_{ed} Silicate iron abundance parameter f_2 View factor α Right ascension f_2 View factor α Right ascension f_2 View factor α Right ascension f_1 Fraction of surface covered wit	
A Bolometric Bond albedo s_i Surface area of element i A_{mod} Modeled bolometric Bond albedotTime A_{mad} Spectral Bond albedo integrated over V-band t_0 Time of solar culmination A_{hat} Projected flat area of rough terrainTTemperature difference A_{pit} Integrated surface area of pit interior ΔT Temperature difference A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function A Slope angle distribution function parameter v_i Pit interior visibility switch b Parameter in incomplete gamma functionwParameter in incomplete gamma function $B_i(T)$ Planck function x_* Dimensionless depth below comet surface B_i Slope angle distribution function parameter x_* Dimensionless thickness of modeled surface slab C Speed of light in vacuum X_* Effective integrated emissivity d_o Distance from parabola focus to vertex X' Difference in X' D Slope angle distribution function X_{mod} Modeled version of X' d_{o} Reaction of surface covered with pits y Silicate iron abundance parameter f_1 Fraction of surface covered with pits y^{2n} Sulface area of adueted surface area of adueted surface adueted in X' D Slope angle distribution function χ_{mod} Modeled version of X' <	
A_{mod} Modeled bolometric Bond albedotTime A_{v} Spectral Bond albedo integrated over V-bandtoTime of solar culmination A_{mat} Projected flat area of rough terrainTTemperature $Apit$ Integrated surface area of pit interior ΔT Temperature difference A_{rim} Pit opening area ΔT_{emp} Empirical temperature function A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function error bar A_{rough} Parameter in incomplete gamma function ΔT_{emp} Empirical temperature function error bar A_{rough} Parameter in incomplete gamma function x Depth below comet surface $B_{c}(T)$ Planck function x_{s} Dimensionless depth below comet surface $B_{c}(T)$ Speed of light in vacuum x_{s} Dimensionless thickness of modeled surface slab C Specific heat capacity X' Product Ae_d d_o Co-declination $\Delta X'$ Difference in X' D_{c} Slope angle distribution function X_{roud} Modeled version of X' e Emission/incidence angle (depending on context) X_{roud} Curve tracing low- χ^2 in (X, \mathcal{I}) phase space f Fraction of surface covered with pits χ Slicet iron abundance parameter f Fraction of surface covered by T_{emp} k_h Modeled volume emissivity factor f Fraction of surface covered by T_{emp} k_h Difference in X' f View factor	
A_v Spectral Bond albedo integrated over V-band t_0 Time of solar culmination A_{flat} Projected flat area of rough terrain T Temperature A_{pit} Integrated surface area of pit interior ΔT Temperature difference A_{rough} Surface area of orough terrain ΔT_{emp} Empirical temperature function A_{rough} Slope angle distribution function parameter v_i Pti interior visibility switch A Nameter in incomplete gamma function w Parameter in incomplete gamma function $B_{\lambda}(T)$ Planck function x_{λ} Dimensionless depth below comet surface $B_{\lambda}(T)$ Slope angle distribution function parameter x_i Dimensionless depth below comet surface C Specific heat capacity x'_{λ} Dimensionless depth below comet surface C Specific heat capacity x'_{λ} Difference in X'_{λ} d_{λ} Distance from parabola focus to vertex X'_{λ} Product Ae_d d_{co} Co-declination $\Delta X'$ Difference in X'_{λ} P Fraction of surface covered with pits y Silicate iron abundance parameter f_{1} View factor α Right ascension f_{1} Nameum distance (in time) for T_{emp} data points to local noon δ Declination f_{1} Nameum distance (in time) for T_{emp} data points to local noon δ Declination f_{1} Index σ Nodeled hemispherical emissivity f_{1} Index σ	
A_{flat} Projected flat area of rough terrainTTemperature A_{pitc} Integrated surface area of pit interior ΔT Temperature difference A_{rim} Pit opening area T_{emp} Empirical temperature function A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function error bar A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function error bar A Slope angle distribution function parameter v_i Pit interior visibility switch b Parameter in incomplete gamma function w Parameter in incomplete gamma function $B_{\lambda}(T)$ Planck functionfunction function parameter x_* Diensionless depth below comet surface \mathcal{B} Slope angle distribution function parameter x_* Dimensionless thickness of modeled surface slab C Speed of light in vacuum X'_* Effective integrated emissivity d_{co} Co-declination X'_{mod} Modeled version of X' p Slope angle distribution function X'_{mod} Modeled version of X' e Emission/incidence angle (depending on context) X_* Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase space f_1 Fraction of surface covered with pits γ'_{mod} Modeled version of X' P_1 View factor α Right accension G Irradiation γ_{emp}^2 Volume emissivity factor h Hack constant γ_{emp}^2 Modeled volume emissivity </td <td></td>	
A_{pit} Integrated surface area of pit interior ΔT Temperature difference A_{rough} Pit opening area ΔT_{emp} Empirical temperature function A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function error bar A Slope angle distribution function parameter v_1 Pit interior visibility switch b Parameter in incomplete gamma function w Parameter in incomplete gamma function $B_{\lambda}(T)$ Planck function x Depth below comet surface $B_{\lambda}(T)$ Slope angle distribution function parameter x_* Dimensionless depth below comet surface C Speed of light in vacuum x_* Dimensionless thickness of modeled surface slab C Speed of light in vacuum X'_* Product $A\varepsilon_d$ d_{co} Co-declination $\Delta X'$ Difference in X' d_{co} Co-declination $\Delta X'_*$ Difference in X'_* p_{ij} Yiew factor α Right ascension of X'_* e Emission/incidence angle (depending on context) X_* Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase space f_{ij} View factor α Right ascension G Irradiation γ^2 Volume emissivity factor h Planck constant φ_{ad} Directional emissivity H Range of local hours covered by T_{emp} ε_h Hemispherical emissivity f_i Index ε_d Directional emissivity f_i Index ε_d Directional emissi	
A_{rim} Pit opening area T_{emp} Empirical temperature function A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function error bar A Slope angle distribution function parameter v_i Pit interior visibility switch b Parameter in incomplete gamma function w Parameter in incomplete gamma function $B_{\lambda}(T)$ Planck function x Depth below comet surface B Slope angle distribution function parameter x_* Dimensionless depth below comet surface C Speed of light in vacuum x'_* Dimensionless thickness of modeled surface slab C Speed of light in vacuum x'_* Dimensionless thickness of modeled surface slab C Speed of light in vacuum x'_* Product A_{Ed} d_{co} Co-declination $\Delta X'$ Pifference in X' D Slope angle distribution function X'_{mod} Modeled version of X' e Emission/incidence angle (depending on context) X_* Curve tracing low- χ^2 in (X, T) phase space f_{ij} View factor α Right ascension G Irradiation γ^2^2 Volume emissivity factor h Planck constant γ_{emp}^2 Modeled volume emissivity factor h Planck constant γ_{emp}^2 Modeled volume emissivity factor H_i Global self heating flux reaching facet i e_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} e_h Hemispherical emiss	
A_{rough} Surface area of rough terrain ΔT_{emp} Empirical temperature function error bar A Slope angle distribution function parameter v_i Pt interior visibility switch b Parameter in incomplete gamma function w Parameter in incomplete gamma function $B_{\lambda}(T)$ Planck function x Depth below comet surface B Slope angle distribution function parameter x_* Dimensionless depth below comet surface c Speeific heat capacity x'_* Dimensionless thickness of modeled surface slab C Speeific heat capacity x'_* Product A_{E_d} d_{co} Co-declination $\Delta X'$ Difference in X'_* D Slope angle distribution function x'_{mod} Modeled version of X'_* e Emission/incidence angle (depending on context) x_* Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase space f_i Fraction of surface covered with pits y Silicate iron abundance parameter F_{ij} View factor α Right ascension G Irradiation γ^2 Volume emissivity factor h Planck constant γ_{mod}^2 Modeled volume emissivity factor H_i Global self heating flux reaching facet i ε_d Directional emissivity f Index ε_h Hemispherical emissivity f Index ε_h Declination f_i Index ε_h Declination f Index ε_h Declination f Index <td< td=""><td></td></td<>	
\mathcal{A} Slope angle distribution function parameter v_i Pit interior visibility switch b Parameter in incomplete gamma functionwParameter in incomplete gamma function $\mathcal{B}_{\lambda}(T)$ Planck functionxDepth below comet surface \mathcal{B} Slope angle distribution function parameterxDimensionless depth below comet surface \mathcal{C} Speed of light in vacuumx'Dimensionless thickness of modeled surface slab \mathcal{C} Speed for heat capacityXEffective integrated emissivity d Distance from parabola focus to vertexX'Product $A_{\mathcal{E}_d}$ d_{co} Co-declination $\Delta X'$ Difference in X' D Slope angle distribution functionX_modModeled version of X' e Emission/incidence angle (depending on context)X_*Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase space f Fraction of surface covered with pitsySilicate iron abundance parameter F_{ij} View factor α Right ascension G Irradiation γ^2 Volume emissivity factor h Planck constant γ^2_{mod} Modeled volume emissivity factor H Maximum distance (in time) for T_{emp} data points to local noon δ Declination \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Integrated emissivity \mathcal{I} Index ε_h Integrated emissivity \mathcal{I} I	
bParameter in incomplete gamma functionwParameter in incomplete gamma function $B_{\lambda}(T)$ Planck functionxDepth below comet surface B Slope angle distribution function parameter x_* Dimensionless depth below comet surface slab C Speed of light in vacuum x'_* Dimensionless thickness of modeled surface slab C Specific heat capacity X Effective integrated emissivity d Distance from parabola focus to vertex X' Product $A\varepsilon_d$ d_{co} Co-declination $\Delta X'$ Difference in X' D Slope angle distribution function X_{mod} Modeled version of X' e Emission/incidence angle (depending on context) X_* Curve tracing low- χ^2 in (X, \mathcal{I}) phase space f Fraction of surface covered with pits y Silicate iron abundance parameter F_{ij} View factor α Right ascension G Irradiation γ^2 Volume emissivity factor h Planck constant γ^2_{mod} Modeled volume emissivity factor H_i Global self heating flux reaching fact i ε_d Directional emissivity i Index ε_{eh} , modModeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\bar{\varepsilon}_h$ Integrated emissivity I_i Index ε_{eh} θ_i Angle between local surface normal and rough surface i f_i Integrated intensity emitted by pit $\bar{\theta}_i$ Input mean slope angle f_i <td></td>	
$B_{\lambda}(T)$ Planck functionxDepth below comet surface \mathcal{B} Slope angle distribution function parameterxDimensionless depth below comet surfacecSpeed of light in vacuumx'Dimensionless depth below comet surfacecSpecific heat capacityX'Effective integrated emissivitydDistance from parabola focus to vertexX'Product Λe_d d_{co} Co-declination $\Delta X'$ Difference in X'DSlope angle distribution function X_{mod} Modeled version of X'eEmission/incidence angle (depending on context) X_{\star} Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase spacefFraction of surface covered with pitsySilicate iron abundance parameterFijView factor α Right ascensionGIrradiation γ^2 Volume emissivity factorhPlanck constant γ^2 Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ DeclinationHiGlobal self heating flux reaching facet i ε_d Directional emissivity \mathcal{I} Index ε_h , modModeled hemispherical emissivity \mathcal{I} Index ε_h Integrated emissivity \mathcal{I} Index ε_h In	
\mathcal{B} Slope angle distribution function parameter x_* Dimensionless depth below comet surface c Speed of light in vacuum x'_* Dimensionless thickness of modeled surface slab C Specific heat capacity X Effective integrated emissivity d_{co} Co-declination $\Delta X'$ Product Ac_d D Slope angle distribution function $\Delta X'$ Difference in X' p Slope angle distribution function X'_{mod} Modeled version of X' e Emission/incidence angle (depending on context) X_* Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase space f Fraction of surface covered with pits y Silicate iron abundance parameter F_{ij} View factor α Right ascension G Irradiation γ^2 Volume emissivity factor h Planck constant γ^2_{mod} Modeled volume emissivity factor H_i Global self heating flux reaching facet i ε_d Directional emissivity \mathcal{I} Index $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Index $\varepsilon_{h,mod}$ Modeled integrated emissivity \mathcal{I}_{comp} Thermal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{lint} Spectral intensity from Dl pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle	
cSpeed of light in vacuum x'_* Dimensionless thickness of modeled surface slabCSpecific heat capacityXEffective integrated emissivitydDistance from parabola focus to vertexX'Product $A\varepsilon_d$ d_{co} Co-declination $\Delta X'$ Difference in X' DSlope angle distribution function X'_{mod} Modeled version of X' eEmission/incidence angle (depending on context) X_* Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase spacefFraction of surface covered with pitsySilicate iron abundance parameter F_{ij} View factor α Right ascensionGIrradiation γ^2 Volume emissivity factorhPlanck constant γ^2_{mod} Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ Declination H_i Global self heating flux reaching facet i ε_d Directional emissivity i Index ε_h Hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\overline{\varepsilon}_h$ Modeled integrated emissivity I_{ond} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle	
CSpecific heat capacityXEffective integrated emissivitydDistance from parabola focus to vertexX'Product $\Lambda \varepsilon_d$ d_{co} Co-declination $\Delta X'$ Difference in X'DSlope angle distribution function X'_{mod} Modeled version of X'eEmission/incidence angle (depending on context) X_{\star} Curve tracing low- χ^2 in {X, I} phase spacefFraction of surface covered with pitsySilicate iron abundance parameter F_{ij} View factor α Right ascensionGIrradiation γ^2 Volume emissivity factorhPlanck constant γ^2 Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ Declination H_i Global self heating flux reaching facet i ε_d Directional emissivity \mathcal{I} Index $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Index $\varepsilon_{h,mod}$ Modeled integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{lit} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle	
dDistance from parabola focus to vertexX'Product $\Lambda \varepsilon_d$ d_{co} Co-declination $\Delta X'$ Difference in X'DSlope angle distribution function X'_{mod} Modeled version of X'eEmission/incidence angle (depending on context) X_{\star} Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase spacefFraction of surface covered with pitsySilicate iron abundance parameter F_{ij} View factor α Right ascensionGIrradiation γ^2 Volume emissivity factorhPlanck constant γ^2_{mod} Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ DeclinationHiGlobal self heating flux reaching facet i ε_d Directional emissivity \mathcal{I} Index $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_h$ Modeled integrated emissivity I_{pli} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_h$ Input mean slope angle	
d_{co} Co-declination $\Delta X'$ Difference in X' D Slope angle distribution function X'_{mod} Modeled version of X' e Emission/incidence angle (depending on context) X_{\star} Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase space f Fraction of surface covered with pits y Silicate iron abundance parameter F_{ij} View factor α Right ascension G Irradiation γ^2 Volume emissivity factor h Planck constant γ^2_{mod} Modeled volume emissivity factor H Maximum distance (in time) for T_{emp} data points to local noon δ Declination H_i Global self heating flux reaching facet i ε_d Directional emissivity H Range of local hours covered by T_{emp} ε_h Hemispherical emissivity i Index ε_h , modModeled hemispherical emissivity \mathcal{I}_{comp} Thermal inertia of porous medium $\bar{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium \bar{e}_h Modeled integrated emissivity I_{pli} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\phi}_h$ Input mean slope angle	
DSlope angle distribution function X'_{mod} Modeled version of X' eEmission/incidence angle (depending on context) X_{\star} Curve tracing low- χ^2 in $\{X, \mathcal{I}\}$ phase spacefFraction of surface covered with pitsySilicate iron abundance parameter F_{ij} View factor α Right ascensionGIrradiation γ^2 Volume emissivity factorhPlanck constant γ^2_{mod} Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ Declination H_i Global self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity i Index $\varepsilon_{n,mod}$ Modeled integrated emissivity \mathcal{I}_{comp} Thermal inertia of porous medium $\bar{\varepsilon}_h$ Integrated emissivity I_{comp} Thermal inertia of compacted medium $\bar{\varepsilon}_h$ Modeled integrated emissivity I_{pli} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\theta}_h$ Output mean slope angle I_{rim} Spectral intensity entited by fit area of size A_{rim} $\bar{\theta}_h$ Moteled nere slope angle	
eEmission/incidence angle (depending on context) X_{\bullet} Curve tracing low- χ^2 in { X, \mathcal{I} } phase spacefFraction of surface covered with pitsySilicate iron abundance parameter F_{ij} View factor α Right ascensionGIrradiation γ^2 Volume emissivity factorhPlanck constant γ^2 Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ Declination H_i Global self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity i Index $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\bar{\varepsilon}_h$ Integrated emissivity I_{comp} Thermal inertia of compacted medium $\bar{\varepsilon}_h$ Modeled integrated emissivity I_{D1} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\theta}_h$ Input mean slope angle I_{mim} Spectral intensity end to down interted $\bar{\theta}_{rim}$ Output mean slope angle	
fFraction of surface covered with pitsySilicate iron abundance parameter F_{ij} View factor α Right ascensionGIrradiation γ^2 Volume emissivity factorhPlanck constant γ^2_{mod} Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ Declination H_i Global self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity \mathcal{I} Index $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\bar{\varepsilon}_h$ Integrated emissivity I_{Din} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\theta}_1$ Input mean slope angle I_{rim} Spectral intensity emitted by flat area of size A_{rim} $\bar{\theta}_0$ Output mean slope angle	
F_{ij} View factor α Right ascension G Irradiation γ^2 Volume emissivity factor h Planck constant γ^2_{mod} Modeled volume emissivity factor H Maximum distance (in time) for T_{emp} data points to local noon δ Declination H_i Global self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity \mathcal{H} Index ε_h Modeled hemispherical emissivity \mathcal{I} Internal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_{h,mod}$ Modeled integrated emissivity I_{Dl} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle I_{mim} Spectral intensity entited by flat area of size A_{rim} $\overline{\theta}_0$ Output mean slope angle	
G Irradiation γ^2 Volume emissivity factorhPlanck constant γ^2_{mod} Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ DeclinationHiGlobal self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity \mathcal{H} Index ε_h Modeled hemispherical emissivity \mathcal{I} Internal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_{h,mod}$ Modeled integrated emissivity I_{Dl} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle I_{mim} Spectral intensity entited by fitat area of size A_{rim} $\overline{\theta}_0$ Output mean slope angle	
hPlanck constant γ_{mod}^2 Modeled volume emissivity factorHMaximum distance (in time) for T_{emp} data points to local noon δ DeclinationHiGlobal self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity \mathcal{H} Index ε_h Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_h$ Modeled integrated emissivity I_{Dl} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface at I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle I_{rim} Spectral intensity efforted surface for size A_{rim} $\overline{\theta}_o$ Output mean slope angle	
HMaximum distance (in time) for T_{emp} data points to local noon δ^{max} DeclinationHiGlobal self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivityiIndex ε_h , Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\bar{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\bar{\varepsilon}_h$, Modeled integrated emissivity I_{plt} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\phi}_h$ Input mean slope angle I_{rim} Spectral intensity end for darge instruction $\bar{\phi}_h$ Output mean slope angle	
H_i Global self heating flux reaching facet i ε_d Directional emissivity \mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity i Index $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_{h,mod}$ Modeled integrated emissivity I_{D1} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle I_{rim} Spectral intensity entited by flat area of size A_{rim} $\overline{\theta}_i$ Output mean slope angle	
\mathcal{H} Range of local hours covered by T_{emp} ε_h Hemispherical emissivity i Index $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_h$ Integrated emissivity I_{Dl} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_i$ Input mean slope angle I_{rim} Spectral intensity entited by flat area of size A_{rim} $\overline{\theta}_o$ Output mean slope angle	
iIndex $\varepsilon_{h,mod}$ Modeled hemispherical emissivity \mathcal{I} Thermal inertia of porous medium $\overline{\varepsilon}_h$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\overline{\varepsilon}_h$ Modeled integrated emissivity \mathcal{I}_{DI} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\overline{\theta}_h$ Input mean slope angle I_{rim} Spectral intensity efforted used surface of size A_{rim} $\overline{\theta}_o$ Output mean slope angle	
\mathcal{I} Thermal inertia of porous medium $\bar{\epsilon}_{h}$ Integrated emissivity \mathcal{I}_{comp} Thermal inertia of compacted medium $\bar{\epsilon}_{h,mod}$ Modeled integrated emissivity I_{Dl} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\theta}_{i}$ Input mean slope angle I_{mim} Spectral intensity efforted area of size A_{rim} $\bar{\theta}_{o}$ Output mean slope angle	
\mathcal{I}_{comp} Thermal inertia of compacted medium $\bar{\varepsilon}_{h,mod}$ Modeled integrated emissivity I_{Dl} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\theta}_i$ Input mean slope angle I_{rim} Spectral intensity effected used use of size A_{rim} $\bar{\theta}_o$ Output mean slope angle	
I_{D1} Spectral intensity from DI pipeline θ Angle between local surface normal and rough surface a I_{pit} Spectral intensity emitted by pit $\bar{\theta}_i$ Input mean slope angle I_{rim} Spectral intensity emitted by fit area of size A_{rim} $\bar{\theta}_o$ Output mean slope angle	
I_{pit} Spectral intensity emitted by pit $\bar{\theta}_{1}$ Input mean slope angle I_{rim} Spectral intensity emitted by flat area of size A_{rim} $\bar{\theta}_{0}$ Output mean slope angle	verage norma
$I_{\rm rim}$ Spectral intensity emitted by flat area of size $A_{\rm rim}$ $\bar{\theta}_0$ Output mean slope angle	
I Construct interaction of and depend eventicity of an element of the second seco	
$T_{\rm R}$ Spectral intensity of reddened sunlight θ intensity of reddened sunlight	
$I_{\rm s}$ Synthetic spectral intensity κ Conductivity of porous material	
$I_{\rm th}$ Spectral intensity of thermal emission $\kappa_{\rm comp}$ Conductivity of compacted material	
I_{λ} Modeled spectral intensity λ Wavelength	
j Index $\Delta\lambda$ Wavelength bin	
J Radiosity Λ Beaming function	
k Boltzmann constant Λ_* Beaming function of single pit	
$l_{ m co}$ Co-latitude μ Cosine of incidence angle	
M Number of data points in T_{emp} bin μ_e Cosine of emission angle	
$N_{\rm r}$ Random number ν Number of degrees of freedom	
$N_{\rm t}$ Number of flat surface elements in rough terrain ξ Small scale self heating parameter	
N_{λ} Synthetic noise function $ ho$ Density of porous material	
p Parameter in ϕ function ρ_{bulk} Bulk density of the entire comet nucleus	
P Rotational period ρ_{comp} Density of compacted material	
Q Incomplete gamma function σ Standard deviation	
Q_A Absorption coefficient σ_{SB} Stefan–Boltzmann constant	
$Q_{\rm E}$ Extinction coefficient ϕ Ratio $\kappa/\kappa_{\rm comp}$	
r Distance between facets in shape model χ^2 Temperature chi-square	
r _h Heliocentric distance χ^2_R Reddening chi-square proxy	
R Reddening χ^2_{ib} Near-infrared thermal emission chi-square proxy	
S Pit depth-to-diameter ratio ψ Porosity	
S_{\min} Smallest S consistent with estimated ξ ω Rotational angular frequency	
S _o Solar constant	

Here, an independent analysis of the scan #9000036 spectra is performed, using an approach suitable for a body with surface roughness. The methods, theories and models necessary for this work are summarized in Section 2 (certain related equation derivations and error investigations are given in Appendices A–D). Specifically, Section 2.1 deals with the extraction of spectral reddening, surface temperature, and the product of the beaming function and directional emissivity¹ from the spectra. Section 2.2 describes the nucleus geometrical model, the thermophysical model, the division of the surface into morphological surface units, as well as the method used to estimate the small scale self heating parameter and the thermal inertia of the nucleus. Section 2.3 summarizes a surface roughness model based on considering circular paraboloid pits, which is used to provide possible interpretations of the small scale self heating parameter. Combined with Hapke theory the model is also used to produce a theoretical beaming function. In Section 2.4, a method used to estimate the volume emissivity factor of the nucleus surface material is described. Furthermore, we explain how Mie theory here is used to place constraints on grain size and composition. Finally, the results are presented in Section 3 and discussed in Section 4.

Table 1 summarizes all parameter symbols used throughout this paper.

2. Methods, theories, and models

2.1. Interpreting the HRI-IR Spectra

The spectra composing scan #9000036 with accompanying spectral registration are available in the NASA Planetary Data Sys-

¹ In this paper we distinguish between directional, hemispherical, and integrated emissivities, see Hapke (1993).

Download English Version:

https://daneshyari.com/en/article/1775341

Download Persian Version:

https://daneshyari.com/article/1775341

Daneshyari.com