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Abstract

Expressions for tidal dissipation in a body in synchronous rotation at arbitrary orbital eccentricity and obliquity are derived. The rate of tidal dissipation for a
synchronously rotating body is compared to that in a body in asymptotic nonsynchronous rotation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Time-dependent tidal distortion of a body leads to internal heating. For a
synchronously rotating body in an eccentric orbit the rate of energy dissipation
is reported to be (Peale and Cassen, 1978; Peale et al., 1979; Wisdom, 2004)
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where k2 is the satellite (secondary body) potential Love number, Q is the satel-
lite effective tidal dissipation parameter, G is the gravitational constant, a is
the orbit semimajor axis, M the mass of the host planet (primary body), n the
orbital mean motion (and rotation rate), which is approximately

√
GM/a3,

R is the satellite radius, and e is the orbital eccentricity. The derivation of this
formula assumes that the body is incompressible, the rotation is uniform and
synchronous, and that the body is small enough that the displacement Love
number h2 is 5k2/3. The eccentricity has also been assumed to be small, and
only the lowest order factor in eccentricity has been kept. Wisdom (2004) gen-
eralized this expression to include the lowest order terms in obliquity, forced
synchronous libration, and spin–orbit secondary libration.

Though this expression has been adequate for most discussions of tidal
dissipation in the Solar System where the orbital eccentricities are relatively
small, there are also now situations for which it is inadequate. For instance,
Garrick-Bethell et al. (2006) argued that the shape of the Moon was best ex-
plained if the moment differences of the Moon froze in during a period in
which the Moon had large eccentricity. For synchronous rotation, the orbit
that satisfies the shape constraint has an eccentricity of 0.49. We will see
that in this case the familiar formula for tidal dissipation, Eq. (1), underesti-
mates the rate of tidal dissipation by a factor of about 30. Another possible
situation of interest is tidal dissipation in extrasolar planets. Extrasolar plan-
ets have been found to have a wide range of orbital eccentricities. For those
extrasolar planets that are gas giants, it may be unlikely that they are in syn-
chronous rotation, but rather may be expected to be in an asymptotic non-
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synchronous state as was once proposed for Mercury (Peale and Gold, 1965;
Levrard et al., 2007). Nevertheless, it may be expected that more rocky extraso-
lar planets will be discovered and that some of these may also have large orbital
eccentricities and be in synchronous rotation. Extrasolar planets may also have
large obliquity: Winn and Holman (2005) proposed that HD209458b might be
in a high obliquity Cassini state, and that the enhanced tidal dissipation at large
obliquity would inflate its radius (see also the discussion of HD209458b by
Levrard et al., 2007).1 It will be appropriate then to have a valid expression for
tidal dissipation at arbitrary eccentricity and obliquity.

Here we generalize the familiar result for tidal dissipation in a synchro-
nously rotating satellite, Eq. (1), and derive a concise formula applicable at
arbitrary eccentricity and obliquity. We compare the rate of tidal heating in syn-
chronous rotation to that in asymptotic nonsynchronous rotation (Levrard et al.,
2007).

2. Derivation for synchronous rotation

The derivation of the generalizations of the tidal heating formula that is
presented in Wisdom (2004) follows one of the derivations presented in Peale
and Cassen (1978). Here we follow the same derivation, but, as appropriate,
generalize the expressions so that they are applicable at arbitrary eccentricity
and obliquity. In this section we assume the obliquity is zero.

Following Wisdom (2004),2 let UT be the tide-raising potential. The satel-
lite may be thought of as consisting of a myriad of small constituent mass

1 In Wisdom (2004), it is clear that the expressions are only valid to second
order in eccentricity, but I forgot to state that the results were also truncated at
second order in the obliquity. Unfortunately, Winn and Holman (2005) used the
expression for tidal dissipation in synchronous rotation presented in Wisdom
(2004) at large obliquity. And Levrard et al. (2007) used the expressions in
Wisdom (2004) for the synchronous dissipation rate at both high eccentricity
and high obliquity.

2 For ease of reading, some of that derivation is repeated here (and corrected).
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elements. The force on each mass element is the negative gradient of the po-
tential energy, where the potential energy is the tidal potential multiplied by
the mass of the constituent. The rate at which work is done on each constituent
is the dot product of this force with the velocity of the constituent. Integrat-
ing over the volume of the satellite gives the rate at which work is done on the
satellite.

The rate of energy dissipation in the satellite is

(2)
dE

dt
= −

∫
Body

ρ�v · ∇UT dV,

where ρ is the density and dV is the volume element. To a good approximation
a satellite may be assumed to be incompressible ∇ · �v = 0 (Peale and Cassen,
1978). The product rule gives

(3)∇ · (UT �v) = �v · ∇UT + UT ∇ · �v,

so, with the assumption of incompressibility, the rate of energy dissipation is

(4)
dE

dt
= −

∫
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ρ∇ · (UT �v)dV.

If we ignore any variation of density in the body, Gauss’s theorem allows us to
write the rate of energy dissipation as a surface integral

(5)
dE

dt
= −ρ

∫
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UT �v · �ndS,

where �n is the normal to the surface and dS is the surface area element. Now
�v · �n is the rate at which the height of the surface changes. The height of the tide
at any point on the surface is approximately

(6)�r = −h2U ′
T

g
,

where h2 is the displacement Love number for the satellite, g is the local ac-
celeration of gravity, and the prime on UT indicates that the tidal potential is
given a phase delay because the dissipative tidal response lags the forcing. So
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The tide-raising gravity-gradient potential is

(8)UT = −GMR2

r3
P2(cosα),

where P2 is the second Legendre polynomial, α is the angle at the center of the
satellite between the planet to satellite line to the point in the satellite where
the potential is being evaluated, R is the distance from the satellite center to the
evaluation point, and r is the planet to satellite distance.

Consider motion in a fixed elliptical orbit, with eccentricity e. Choosing
rectangular coordinates with the x-axis aligned with the orbit pericenter and
the orbit in the (x, y)-plane, the orbital position is

(9)o = (r cosf, r sinf,0)

with true anomaly f . In terms of planetocentric longitude λ and colatitude θ ,
the rectangular components of a surface element in the unrotated satellite (or at
the initial time) are

(10)s0 = (R sin θ cosλ,R sin θ sinλ,R cos θ).

Assuming uniform synchronous rotation about the z-axis (perpendicular to the
orbit plane), the rectangular components of this element at time t are

(11)s = Rz(nt)s0 = (
R sin θ cos(λ + nt),R sin θ sin(λ + nt),R cos θ

)
,

where Rz(nt) is an active right-handed rotation about the z-axis by the angle
nt . The dot product of the surface element with the orbital position gives o · s =
rR cosα. This completes the expression for the tidal potential as a function of
time and location on the surface. The delayed tidal potential U ′

T
is found by

replacing nt by nt + � in the expression for UT . The tidal model used here is
the one where 1/Q is proportional to frequency. This is sometimes known as
the Mignard model (Mignard, 1980).

The average rate of energy dissipation is found by carrying out the surface
integral, Eq. (7), and averaging over an orbital period.

The surface integral may be carried out by expanding the integrand as a
Poisson series in the angular variables. Any term containing λ then integrates
to zero, the rest are multiplied by 2π . The θ integrals are simple. The details are
unilluminating and will not be shown. The calculations were carried out with
computer algebra, and checked by performing the integrals numerically. The
result is
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and where β = (1 − e2)1/2. The values of r ′ and f ′ are those of the radius r

and true anomaly f for a mean anomaly of nt + �.
We assume the dissipation is small and can therefore approximate

(14)γ = γ0 + dγ

d�
� + · · · ≈ γ0 + dγ

d�
sin�,

where γ0 is the value of γ for � = 0, and the derivative dγ /d� is evaluated
at � = 0. With this approximation the time average of the energy dissipation
expression can be completed analytically.

Using
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where M is the mean anomaly, we find
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The time average of the energy dissipation can be found by integrating the
energy dissipation over an orbital period and dividing by the orbital period.
Note that γ0 is proportional to sinf/r7, and its time average is zero. Thus we
just need to calculate the average of dγ /d�.

The integrals involving the radius and true anomaly can be expressed ex-

actly in terms of Hansen functions X
ij
k

(Plummer, 1960; Mignard, 1980). The
time average of the energy dissipation is
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where 〈dγ /d�〉 is the average of dγ /d� over an orbit period:
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