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a b s t r a c t

The Deterministic Annealing (DA) clustering method, which determines the cluster centers, their sizes,
and probability with which data are associated with each cluster, is tested using artificial data and
applied to atmospheric satellite data. It is also shown how the method can be advantageously used to
characterize data outliers. The method is based on the optimization of a cost function that depends both
on the averaged distance of data points to cluster centers and the Shannon entropy of the data. The cost
function uses two independent parameters in a close analog to the Gibbs' thermodynamics (with the
averaged distance similar to the internal energy) allowing a sufficient control of the formation of new
clusters as “phase transitions” by changing the clustering parameter similar to the thermodynamical
temperature. The satellite data used are a temperature–water vapor data set and the positions of deep
convective clouds obtained from the measurements of the Atmospheric InfraRed Sounder (AIRS) on the
Aqua satellite. The clustering of these data is demonstrated for the 2D case (at fixed pressure level) and
for the 3D case at multiple pressure levels indicating potential applications to investigation of
distributions of atmospheric profiles.

Published by Elsevier Ltd.

1. Introduction

Current research in atmospheric and climate sciences relies on
the use of data products provided by numerous satellites orbiting
the Earth. It is a common practice to arrange the original satellite
data into grid boxes of selected size by averaging all measured data
points inside a grid box (taking a mean) and providing a standard
deviation (see for example http://disc.sci.gsfc.nasa.gov/AIRS/data_
holdings/). This practice is based on the assumption that the data
distribution within those boxes is normal. This assumption is not
always valid, c.f. Perron and Sura (2013), and our direct checks of
actual distributions of data in grid boxes show that often the data
are distributed in a non-Gaussian manner, i.e. that they cannot be
accurately characterized by their mean and standard deviation.
Adding higher statistical moments (skewness, kurtosis, …) may be
useful under the assumption that the data have a unimodal
distribution function but not reliable since in some grid boxes
the data distribution may be multi-modal. A better approach
advocated here is to group grid box data into clusters with
characteristics that provide more extended statistical information
on measured quantities. The process of agglomerative (and divi-
sive) clustering consists in partitioning a selected data set
into several subsets called clusters. In mathematical terms, the

problem of partitioning can be cast as optimization of a cost
function that characterizes how similar the data in a cluster are to
each other compared to the data in other clusters. Clustering
methods allow one to evaluate the relative importance of each
cluster using simple descriptive statistics. Clustering can also be
understood as a way of construction of data histograms with
information about the probability distributions underlying their
bins and with an additional advantage of applying it to multi-
dimensional data.

Cluster analysis is successfully used in atmospheric and climate
sciences for analyzing data and model outputs (c.f. Reljin et al.,
2002; Steinbach et al., 2003; White et al., 2005; Hoffman et al.,
2005). The book by Wilks (2005) gives a description of techniques
and a list of applications in atmospheric sciences. The Interna-
tional Satellite Cloud Climatology Project (ISCCP) used a cluster
technique to identify cloud and weather regimes (Jakob and
Tselioudis, 2003; Rossow et al., 2005). A cluster analysis had been
applied to the CloudSat data from the A-train formation of
satellites for identifying the type of clouds (Sassen and Wang,
2008). These and most other applications used a popular in
climate and atmospheric studies clustering algorithm called
K-means (Hartigan, 1975). The K-means cost function uses one
cluster parameter, the distance measure between a data point and
the cluster center. K-means results depend on the selection of the
initial centers of clusters (the means) and there is no guarantee
that it will converge to a global optimum. A relatively new
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algorithm, the entropy-constrained vector quantization, ECVQ,
clustering has been designed for more detailed evaluation of the
cluster relative weights or priors (Chou et al., 1989). It does so by
using an additional constraint (entropy index) in the cost function.
The ECVQ algorithm has been proposed to be used for reduction of
the size and complexity of massive climate data (Braverman, 2002;
Braverman et al., 2003).

Here as a next step in development of methods of data
clustering preserving the information containing in the original
data, we consider a more advanced algorithm called Deterministic
Annealing (Rose, 1998), which is based on the minimization of the
cost function relative to two independent parameters and provides
probabilities with which data are associated with each cluster. The
method has a close and deep analog to the classical Gibbs'
thermodynamics based on the use of a minimum two basic
variables to define a thermodynamic state, c.f. Landau and
Lifshitz (1980).

In Section 2, we briefly describe the Deterministic Annealing
(DA) method referring the reader to the original paper by Rose
(1998) for technical details. Section 3 illustrates the application of
the DA algorithm to artificial data. In Section 4, we present the
applications of the DA algorithm to clustering atmospheric data
retrieved from the measurements by the Atmospheric Infrared
Sounder (AIRS) and to identifying data outliers. Finally, we
summarize our results and discuss other potential applications of
the algorithm (Section 5).

2. Deterministic annealing clustering

The Deterministic Annealing (DA, Rose, 1998) uses a probabil-
istic framework for clustering: The input data = …x x xx [ , , , ]n1 2 are
assigned to clusters with centers = …y y yy [ , , , ]K1 2 using the
conditional probability = ∣p p y x( )a (probability of y given x), which
is called the association probability. The algorithm searches for the
optimum of the cost function λ= −F D H , where

∑ ∑ ∑ ∑= =D p d p p dx y x y x x y( , ) ( , ) ( ) ( , ),
(1)

a
x y x y

∑ ∑

∑ ∑

= −

= − +

H p p

p p p constant

x y x y

x

( , ) log ( , )

( ) log
(2)

a a

x y

x y

are the average distance and the Shannon entropy (Shannon, 1948)
scaled by a Lagrange multiplier λ. Here p px x y( ), ( , ) are the data
probability and the joint probability, and d x y( , ) is a distance
measure. In this paper, we assume that = ∥ − ∥d x y 2. The choice
of the cost function F is made to restrict randomness in minimiza-
tion of D relative to the free parameters py, a to a level measured
by the Shannon entropy. Note that the second lines in Eqs. (1) and
(2) show that the cost function depends only on these two free
parameters, given the data and data probability distribution.

To show a systematic increase of the information when the
parameter λ and the averaged distance decrease, we introduce the
rate R that quantifies the information amount in a slightly
different fashion than the entropy H does, thereby allowing a clear
graphical depiction of the tradeoff (Rose, 1994). Within the context
of information theory, R, expressed as a function of D, is “the
effective rate at which the source produces information subject to
the constraint that the user can tolerate an average distance of D”
(Berger, 1971). In the context of the present work and in a loose
sense, the rate is a quantity that characterizes the information
content of a given solution (set of clusters) with respect to the

original data. We calculate R using the following equation:
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where =p p y( )c is the probability distribution of cluster centers.
Minimizing F with respect to the association probability under

the additional constraint that the total contribution of each cluster
weight is constant (the so-called mass constrained version of DA)
results in the Gibbs distribution:
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cluster locations y leads to the condition:
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where pa is the Gibbs distribution (4).
The DA notation has a close analog in thermodynamics with F

similar to the Helmholtz free energy. The averaged distance D
plays the role of the internal energy and the Lagrange multiplier λ
plays the role of the temperature in thermodynamics. The mini-
mum of the free energy determines the distribution of a system at
thermal equilibrium, i.e. the Gibbs distribution (4). The procedure
of annealing consists of maintaining the system at thermal
equilibrium while carefully lowering the temperature. This physi-
cal analogy helps to understand the work of the DA algorithm and
to control the size of the clustering model by observing the “phase
transitions” (formation of new clusters) at some critical values of λ,
see below.

The algorithm is called “deterministic” because the cost func-
tion is directly minimized in contrast to some other clustering
algorithms, such as K-means, that rely on stochastic simulations.
The algorithm entails a gradual decrease of λ to find a minimum of
F at each λ, i.e. effectively “annealing” the system. Technically, for
each value of λ the association probability (4) is calculated for a
fixed set of clusters. Subsequently, the clusters location is updated
using Eq. (5) at each value of the association probability.

It can be shown that high λs imply that the global minimum of
F is found (Rose, 1998). When λ → ∞, the probability (4) is uniform
and the condition (5) leads to a single cluster, the sample mean of
the data. The number of clusters increases as λ decreases under-
going “phase transitions” (formation of clusters). When λ → 0 each
data point becomes a one-point cluster. A simple method applied
to the minimum F allows us to determine a “critical temperature”
λc at which a phase transition, i.e. appearance of a new cluster,
occurs (Rose, 1998). Specifically, at each new λ, the condition for
phase transition λ λ≤ c is checked for each cluster. The critical λc is
calculated as twice the value of the largest eigenvalue of the
covariance matrix of the posterior probability ∣p x y( ):

∑= ∣ − −∣C p x y x y x y( )( )( ) ,
(6)

tr
x y

x

where the symbol ‘tr’ indicates the transpose matrix. If the
condition is found true for one cluster, another centroid is added.
The formation of a new cluster takes place when the value
λ λ= 2c max is reached, with λmax being the largest eigenvalues of
the covariance matrix.

3. How the DA algorithm works

Let us first show how the DA algorithmworks using our Matlab
implementation of the algorithm. In this implementation we enter
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