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a b s t r a c t

Present work is the first attempt to predict horizontal component of earth's magnetic field (H) and range
in H (ΔH) over Indian sector by considering the stations, namely, Trivandrum, Pondicherry, Visakha-
patnam, and Nagpur, using the concept of neural network (NN). Through training procedure, solar flux
(F10.7), latitude, longitude, day of the year, local time, Ap index, IMF Bz, and ion number density are
identified as the optimum choice of input parameters, whereas the inclusion of solar wind pressure and
velocity has not significantly improved the performance of the model. Thus an appropriate neural
network model, NSSHC has been developed with 12 hidden neurons and 500 iterations to predict H
component and range in H (ΔH) during the period 1996–2001, to capture diurnal, seasonal, latitudinal,
magnetic and solar activity effects.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial Neural Networks (ANNs) are well suited to environ-
mental modelling as they are nonlinear, relatively insensitive to
data noise, and perform reasonably well when limited data are
available. When ANNs are used for the prediction of environmen-
tal variables, the modelling philosophy employed is similar to that
used in the development of more conventional statistical models.
Infact, it has been suggested that ANNs represent variations on
common statistical themes. In both cases, the purpose of the
model is to capture the relationship between a historical set of
model inputs and corresponding outputs. This is achieved by
repeatedly presenting examples of the input/output relationship
to the model and adjusting the model coefficients (i.e., the
connection weights) in an attempt to minimise an error function
between the historical outputs and the outputs predicted by the
model. An advantage of using neural networks is that they often
can be quickly constructed using available data at a very low cost
when compared with developing conventional expert systems.
The saving in time and cost is achieved by replacing the process of
knowledge acquisition and knowledge base construction with the
process of training networks. Another, perhaps more significant,
advantage is that neural networks can learn from examples and

make predictions for new situations. Therefore, neural networks
can often be trained to solve a problem once a sufficient amount of
representative data becomes available to constitute a good train-
ing set, even before the problem is fully understood or before
human experts are able to formulate their knowledge in an
organized, complete and consistent manner to allow an expert
system solution (Bishop, 1996; Hertz, 1993; Koons and Gorney,
1991; Lundstedt, 1992; Gorney et al., 1993; Lundstedt and Wintoft,
1994).

In the framework of space weather an important role is played
by geomagnetic storms, which are comprised of processes occur-
ring in near-Earth space. Recently, major efforts have been devoted
to obtain global empirical models of the vertical plasma drifts
using radar, magnetometer, satellite, and ionosonde observations
(e.g., Richmond et al., 1980; Fejer and Scherliess, 1995; Batista
et al., 1996; Scherliess and Fejer, 1999; Sobral et al., 2003). The
ionospheric effects of prompt penetration electric fields (PPEFs)
for a variety of interplanetary magnetic field directions were
presented by Tsurutani et al. (2004). The dayside ionospheric
storms due to PPEFs are characterized by transport of near-
equatorial plasma to higher altitudes and latitudes, forming a
giant plasma fountain (super-fountain).

During geomagnetic storms, very intense fluctuations of the
horizontal component of the ground magnetic field are observed
(Gonzalez et al., 1994; Tsurutani et al., 1995) due to variations in
the equatorial ring current. An energy source of the geomagnetic
phenomena is the Sun which transfers energy to the Earth's
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magnetosphere by means of streams of the solar wind (SW). The
magnetosphere is usually closed for SW, and energy from SW put
in magnetosphere only in a case when interplanetary magnetic
field (IMF) has a significant component parallel to the terrestrial
magnetic dipole, i.e. approximately negative (southward) IMF Bz
component (Gonzalez et al., 1994; Petrukovich et al., 2001 and
references therein). In a case when rate of energy input is higher
than rate of its quasi-stationary dissipation, energy collects in the
magnetosphere. When its amount reaches and exceeds some
certain level, any small disturbance outside or inside magneto-
sphere can result in release of this energy (so-called “trigger”
mechanism) as reconnection of magnetic field, global reorganiza-
tion of current systems of magnetosphere and heating/accelera-
tion of plasma, i.e. generate magnetospheric disturbance.

Artificial intelligence (AI) has been increasingly recognized as a
powerful analysis tool in various areas, especially in solar–terres-
trial physics. Neural networks (NNs) are a branch of AI methods
which are proving particularly successful in solar–terrestrial time
series prediction and pattern recognition; they appear to be
especially effective in modelling the time development of irregular
processes (Koons and Gorney, 1991; Lundstedt, 1992; Gorney et al.,
1993; Lundstedt and Wintoft, 1994; Williscroft and Poole, 1996;
Wu and Lundstedt, 1996).

Recently, Unnikrishnan et al. (2006) analysed the deterministic
chaotic behaviour of GPS TEC fluctuations at mid-latitude,
and equatorial/low latitude regions of Indian subcontinent
(Unnikrishnan and Ravindran, 2010) by employing the nonlinear
aspects like mutual information, fraction of false nearest neigh-
bours, phase space reconstructions, and chaotic quantifiers. Also
they compared the possible chaotic behaviour of ionosphere
during geomagnetic storms and quiet times, under different
seasons, local times, and latitudes using dynamical and topological
invariants. Their study emphasis that the influence of an external
stochastic driver (solar wind) could alter the inherent dynamics of
a system (ionosphere) if the coupling is powerful, and hence this
could be a possible reason for the deviation of the values of
Lyapunov exponent during storms from the respective quiet time
values (Unnikrishnan et al., 2006). Nonlinear dynamical models of
the magnetosphere derived from observational time series data
using phase space reconnection techniques have yielded new
advances in the understanding of its dynamics.

The importance of nonlinear dynamical studies to space
weather arises from its ability to reconstruct the dynamics from
the observational data of a limited number of variables. In the
input–output studies the local linear technique has been success-
ful in yielding simple predictive models of the global magneto-
spheric dynamics by using the main features of the system. In the
present work, for the first time, the horizontal component of
earth's magnetic field (H) and range in H (ΔH) over Indian sector
are predicted using the concept of neural network (NN), by
designing NSSHC (Nair Service Society Hindu College) model.

Studies of Pavlos et al. (1999a,b,c) revealed that the random
character of the magnetospheric time series could be caused by
the chaotic low-dimensional internal dynamics of the magneto-
spheric system, while this character only appears when the solar
wind input takes appropriate values. As the solar wind is con-
tinuously changing its state the magnetospheric dynamics can live
intermittently on a low-dimensional chaotic attractor. Another
study using energetic ions' signal also suggests the existence of
two different physical processes related to the magnetospheric
dynamics: the first process corresponds to a stochastic external
component and the second process corresponds to a low-dimen-
sional chaotic component. Hence, the internal instability of the
magnetosphere system may be suppressed/modified and the
system may transit more towards stochasticity rather than deter-
ministic chaoticity. The complex behaviour of magnetosphere is

mainly due to the solar wind and the critical feature of persistency
in the magnetosphere could be the result of a combined effect of
solar wind and internal magnetospheric activity.

2. Data and methodology

As a requirement for training a NN, input parameters repre-
senting the variables that the output responds to are required. Day
number (DN), 1rDNr365, represents the seasonal variation and
hour (HR), 0rHRr23, the diurnal variation. The HR input is in
Local Time (LT). As explained in Poole and McKinnell (2000) the
DN and HR inputs are split into their cyclic components and
presented to the NN as four inputs, two for DN (DNS and DNC) and
two for HR (HRS and HRC). These four inputs are calculated as
follows:
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As the first step, we predicted H component as a function of
diurnal, seasonal, solar and magnetic activity variations, which are
assigned as the basic parameters (BP) to be fed as the input of
neural network. As the second stage, probable solar wind para-
meters, IMF Bz, ion number density, solar wind velocity, and solar
wind pressure are included one by one and the improvement of
the model efficiency is checked in terms of Root Mean Square
Error (RMSE) between the predicted and observed values.

The NN has to be trained with a similar time series before it can
make any prediction, and the dataset used for training is called
training set. Infact the training datasets are selected from different
geophysical conditions, representing diurnal, seasonal, latitudinal,
solar and magnetic activity variabilities. It is to be noted that, the
data sets used for testing are not the part of those used for
training. For training the network, we have selected three months
namely, February, July, and September, representing three seasons
winter, summer, and equinox for low (1996), moderate (1998) and
high (2001) solar activity periods observed at various stations,
Trivandrum (TVM), Pondicherry (PND), Visakhapatnam (VSK), and
Nagpur (NGP) over the Indian equatorial sector (Table 1). As the
next step, by feeding the hourly values of optimum choice of input
parameters, H component of earth's magnetic field is predicted at
different locations, local times, seasons, solar and magnetic activ-
ities, and thus the efficiency of NN designed is validated (see
Tables 3–6). Fig. 1 presents the location of stations considered in
the present study.

By performing similar procedures, range in H (ΔH) is also
predicted as a function of diurnal, seasonal, solar and magnetic
activity variations.

Table 1
List of stations considered.

Station name GG LAT (°N) GG LONG (°E) GM LAT (°N)

Trivandrum 8.480 76.950 �0.52
Pondicherry 11.917 79.917 2.62
Visakhapatnam 17.683 83.317 8.06
Nagpur 21.150 79.083 11.83
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