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Abstract

Wave disturbances of a stratified gas are studied. The description is built on a basis of the Bhatnagar–Gross–Krook

(BGK) kinetic equation which has reduced down the level of fluid mechanics. The double momenta set is introduced inside

a scheme of iterations of the equations operators, dividing the velocity space along and opposite gravity field directions. At

both half-spaces the local equilibrium is supposed. As a result the momenta system is derived. It reproduces Navier–Stokes

and Barnett equations at the first and second order at high collision frequencies. The homogeneous background limit gives

the known results obtained by direct kinetics applications of Loyalka and Cheng as well as the recent higher momentum

fluid mechanics results of Chen, Rao and Spiegel. The ground state declines from exponential at the Knudsen regime. The

WBK solutions for ultrasound in exponentially stratified medium are constructed in explicit form, evaluated and plotted.
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1. Introduction

There are gas dynamics problems the solution of
which needs a theoretical basis going out of
traditional Navier–Stokes hydrodynamics. It is con-
nected with a break of the condition: Kn ¼ l=L51,
where Kn is the Knudsen number, l the free particle
path, and L the characteristic scale of non-homo-
geneity of a problem. Perhaps, the first work, in
which a wave disturbance in a gas was investigated

from the point of view of more general kinetic
approach, was the work of Wang Chang and
Uhlenbeck (1952). The authors have offered a
method of a dispersion relation construction for a
homogeneous gas directly from Boltzmann equation.

The further experimental and theoretical
researches of Meyer and Sessler (1957), Greenspan
(1965), Foch and Ford Jr. (1970), Buckner and
Ferziger (1966a,b), Sirovich and Thurber (1961,
1963, 1965, 1967), Thomas and Siewert (1979),
Loyalka and Cheng (1979), Cheng and Loyalka
(1981), Monchik (1964) and Banankhah and
Loyalka (1987) of sound propagation in a homo-
geneous gas have shown that at Knudsen numbers
of the unit order the waves behavior considerably
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differs from ones predicted on a basis of Navier–
Stokes equations. These researches revealed two
essential features: first, the perturbations keep wave
properties at more large values of Kn than it could
be assumed on a basis of the classical hydrodynamic
description. Secondly, at KnX1 such concepts as the
wave vector and the frequency of a wave become ill-
determined. May be the most adequate results that
reproduce experiments of Meyer and Sessler (1957)
and Greenspan (1965) almost in all the Kn number
range were obtained in Banankhah and Loyalka
(1987). It is more difficult to explore the case when
the Knudsen number is non-uniform in space or in
time and a disturbance passes the Knudsen regime
area. The statement and the solution of such
problems should definitely be based on kinetic
equations or their advanced model analogues
(Shchekin et al., 1990).

Quite recently interest to the problems has grown
again in connection with general fluid mechanics
development (Leble and Vereshchagin, 1993;
Vereshchagin and Leble, 1993, 1996; Vereshchagin
et al., 1993; Chen et al., 2000, 2001). It was pushed
by more deep understanding of perturbation theory
(so-called non-singular perturbations), see, e.g.,
Leble (1991).

In his paper we consider a gas medium, stratified
exponentially in gravity field, directed along the
z-axis. It means that the Knudsen number also
depends on z: KnðzÞ. We continue to develop the
method (Vereshchagin and Leble, 1993, 1996) that
goes up to the pioneering paper of Lees (1965). The
construction of analytical solutions of the model
kinetic equation Bhatnagar–Gross–Krook (BGK)
(Gross and Jackson, 1959) is extracted via separate
representation of the distribution function as the
local equilibrium one but with different momenta
sets at positive and negative velocity component vz

half-spaces.
Thus, the set of parameters determining a state of

the gas increases twice. Such number of parameters
of the distribution function (6) results in that the
distribution deviates from local equilibrium and
accordingly widen hydrodynamics. In the range of
small Knudsen numbers l5L we have M̂þ

n ¼ M̂�
n

and the distribution function (6) tends to local
equilibrium one, giving a solution at the Navier–
Stokes hydrodynamical regime. For big Knudsen
numbers the same formula (6) gives solutions of so-
called collisionless problems. Similar ideas have
been successfully applied to a series of problems.
For example, in papers of Lees (1965), Liu and Lees

(1961) and Yang and Lees (1956), Shidlovskij
(1965), a method of discontinuous distribution
functions was used for the description of a flat
and cylindrical (neutral and plasma) flows. For a
problem of a flat flow the surface of break in space
of speeds was determined by the same natural
condition V z ¼ 0, and in a cylindrical case V r ¼ 0,
where V z and V r are axial and radial components of
speed of particles, respectively. The problem of a
disturbance launched by a pulse movement of plane
(Shidlovskij, 1965) was solved similarly.

In a problem of a shock wave structure (see
Shidlovskij, 1965; Mott-Smith, 1951; Nambu and
Watanabe, 1984) the solution was represented as a
combination of two local equilibrium functions, one
of which determines the function before front of a
wave, and another the tail. In a problem of
condensation and evaporation of drops of any size
(Sampson and Springer, 1969; Ivchenko, 1987) the
break surface was determined by so-called ‘‘cone of
influence’’, thus all particles were divided into two
types: flying ‘‘from a drop’’ and flying ‘‘not from a
drop’’.

In the first two sections we derive the basic
equations using the iterations in the evolution
operator along the idea of the non-singular
perturbation method (see, e.g. Leble, 1991). Next
(Section 4) we analyze the transition to a limiting
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Fig. 1. The inverse non-dimensional phase velocity as a function

of the inverse Knudsen number. The results of this paper are

compared to Navier–Stokes, Barnett ones, the first and the

second order theories of Chen et al. (2001), the results of Buckner

and Ferziger (1966a,b) based on the direct solution of the

Boltzmann equation (BGK-model) and the experimental data of

Meyer and Sessler (1957) and Greenspan (1965).

D.A. Vereshchagin, S.B. Leble / Journal of Atmospheric and Solar-Terrestrial Physics 68 (2006) 1321–13291322



Download English Version:

https://daneshyari.com/en/article/1778414

Download Persian Version:

https://daneshyari.com/article/1778414

Daneshyari.com

https://daneshyari.com/en/article/1778414
https://daneshyari.com/article/1778414
https://daneshyari.com

