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We develop a method of stochastic differential equation to simulate electron acceleration at astrophysical 
shocks. Our method is based on Itô’s stochastic differential equations coupled with a particle splitting, 
employing a skew Brownian motion where an asymmetric shock crossing probability is considered. 
Using this code, we perform simulations of electron acceleration at stationary plane parallel shock 
with various parameter sets, and studied how the cutoff shape, which is characterized by cutoff shape 
parameter a, changes with the momentum dependence of the diffusion coefficient β . In the age-limited 
cases, we reproduce previous results of other authors, a ≈ 2β . In the cooling-limited cases, the analytical 
expectation a ≈ β + 1 is roughly reproduced although we recognize deviations to some extent. In the 
case of escape-limited acceleration, numerical result fits analytical stationary solution well, but deviates 
from the previous asymptotic analytical formula a ≈ β .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Mechanism of particle acceleration is still unknown. Diffusive 
shock acceleration (Krymskii, 1977; Bell, 1978; Blandford and Os-
triker, 1978) is the most plausible if strong shock waves exist as 
in young supernova remnants (SNRs). We have not yet well con-
strained model parameters, namely magnetic field strength and de-
gree of magnetohydrodynamic turbulence, although there are ob-
servational claims of turbulent, amplified field in young SNRs (Vink 
and Laming, 2003; Bamba et al., 2003, 2005a, 2005b; Yamazaki 
et al., 2004; Uchiyama et al., 2007). These are important to es-
timate maximum attainable energy of both electrons and nuclei 
(e.g., Yoshida and Yanagita, 1997). Yamazaki et al. (2013) proposed 
that cutoff shape of electron spectrum around the maximum en-
ergy Emax may provide us important information on the cosmic-
ray acceleration at young SNRs. They related the cutoff shape pa-
rameter a, which is defined by N(E) ∝ exp[−(E/Emax)

a], to the 
energy dependence of the electron diffusion coefficient β (that is, 
K ∝ Eβ ) in each case where the maximum electron energy is de-
termined by SNR age, synchrotron cooling and escape from the 
shock. They found that if the power-law index of the electron spec-
trum is independently determined by other observations, then the 
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cutoff shape parameter can be constrained by near future hard 
X-ray observations such as Nuclear Spectroscopic Telescope Array 
(NuSTAR) (Hailey et al., 2010; Harrison et al., 2013) and ASTRO-H 
(Takahashi et al., 2010) and/or CTA (Actis et al., 2011). These X-ray 
and gamma-ray observations will be important for the estimate of 
β as well as Emax and the magnetic field strength.

In analysis of Yamazaki et al. (2013), they assumed relations be-
tween a and β as a = 2β , β + 1 and β in the case of age-limited, 
cooling-limited and escape-limited acceleration, respectively. The 
formula a = 2β in the age-limited case has been based on numer-
ical simulation (Kato and Takahara, 2003; Kang et al., 2009), while 
the others are obtained analytically on the assumption of station-
ary state, and they are not yet confirmed numerically. In this paper, 
we study the cutoff shape of the electron spectrum by numerically 
solving the transport equation describing diffusive shock accelera-
tion, and study whether the above relations are right or not.

We use a numerical method for solving cosmic-ray trans-
port equation (so-called, diffusion–convection equation), which 
was proposed by Achterberg and Krülls (1992). This method is 
based on the equivalence between the Fokker–Planck equation and 
the Itô stochastic differential equation (SDE) (Gardiner, 1983). Sub-
sequent studies have followed for various situations (Krülls and 
Achterberg, 1994; Yoshida and Yanagita, 1994; Marcowith and Kirk, 
1999; Marcowith and Casse, 2010; Schure et al., 2010). It should 
be noted that the SDE method has an advantage if the trans-
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port equation has to be solved in multi-dimensions. In practice, 
the importance of upstream inhomogeneity for understanding of 
cosmic-ray acceleration at supernova remnants has been pointed 
out by various authors (e.g., Inoue et al., 2012). In this case, it is 
clear to consider the particle acceleration in three dimensions.

The simple-minded application of the SDE method has prob-
lems in actual numerical integration. First, δ-functions appear in 
SDE if we apply it to the shock front, where the background fluid 
velocity as well as the diffusion coefficient have a sudden jump. 
In order to avoid this, the shock structure is artificially smoothed 
(Achterberg and Krülls, 1992). However, even in this case, the 
time step has to be small enough for the simulated particles 
not to miss the sharp gradient at the shock front, which signif-
icantly slows down the simulation. Furthermore, in actual simu-
lation time, approximation of the smooth shock transition causes 
incorrect particle spectrum. This difficulty was solved by Zhang
(2000) who used the skew Brownian motion (Harrison and Shepp, 
1981) which can be solved by a scaling method that eliminated 
the δ-functions in the SDE. Other numerical schemes to resolve 
this problem have also been proposed (Marcowith and Kirk, 1999;
Achterberg and Schure, 2011). Second problem is that a large dy-
namic range in particle momentum causes low statistical accuracy 
at large momenta. This difficulty was also resolved by employing a 
particle splitting technique (Yoshida and Yanagita, 1994).

In this paper, we first attempt to perform simulations of elec-
tron acceleration incorporating both methods of Zhang (2000)
and particle splitting. Owing to newly developed code, simulated 
spectra have cutoff shape accurate enough to be compared with 
analytical formulae. As a first step, we focus on the cases of 
one-dimensional plane shock. Extended studies for more compli-
cated cases such as time dependent free escape boundary, nonuni-
form magnetic fields, and/or multi-dimensional systems (includ-
ing spherical shock geometry) are simple but remained as future 
works.

2. Basic equations and numerical method

2.1. Basic equations

In this paper, we consider one-dimensional system, that is, 
all quantities depend on the spatial coordinate x. The diffusion–
convection equation with energy-loss process is given by
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where f (x, p, t) is the distribution function for electrons, and p
is the electron momentum. Functions v(x) and K (x, p) are back-
ground velocity field and the spatial diffusion coefficient of the 
electrons, respectively. In this paper, we consider the synchrotron 
cooling. Then, the loss term becomes

dp

dt
= −βsynγ p, (2)

where

βsyn = σT B2

6πmec
, (3)

and γ = √
(p/mec)2 + 1 is the electrons’ Lorentz factor, and B is 

the magnetic field. Physical constants, σT, me and c are Thomson 
cross section, mass of electron and velocity of light, respectively.

Introducing new quantities,
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)
, (4)

and

F (x, u, t) = p3 f (x, p, t), (5)

Eq. (1) becomes the Fokker–Planck form,
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This equation is equivalent to the following SDEs of the Itô form:
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where dW is a Wiener process given by the Gaussian distribution:

P (dW ) = 1√
2πdt

exp(−dW 2/2dt). (9)

Numerical simulation by SDEs is much faster than that with the 
usual Monte Carlo method and is much easier than solving the 
original Fokker–Planck equation, because the SDEs are ordinary 
differential equations.

2.2. Method of Zhang (2000)

The application of the SDEs, Eqs. (7) and (8), for the study of 
electron acceleration at the shock is not simple, because the veloc-
ity field v(x) has a sudden jump at the shock front, so that dv/dx
in Eq. (8) contains δ-function. Similarly, if the diffusion coefficient 
also behaves discontinuously at the shock front, then ∂ K/∂x in 
Eq. (7) also contains the δ-function. We take the comoving frame 
with the shock which is located at x = 0 and we define x < 0 as 
upstream region. Following Zhang (2000), we decompose the ve-
locity field v and the diffusion coefficient K into two parts:

v(x) = vc(x) + �V

2
sign(x), (10)

K (x) = Kc(x) + �K

2
sign(x), (11)

where �V = v(0+) − v(0−) and �K = K (0+) − K (0−), and sign(x)
is the sign of x. Functions vc(x) and Kc(x) are continuous for ar-
bitrary x (including x = 0). We scale the x coordinate according to 
its sign in the following way (Harrison and Shepp, 1981):
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(12)

where

α = K (0+)
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. (13)

Then, SDEs (7) and (8) can be rewritten as
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Derivation of Eqs. (14) and (15) is the same way as of Zhang
(2000). These equations do not contain δ-functions and can be in-
tegrated directly. Once y(t) is obtained, the position of electrons 
x(t) can be obtained by
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