
New Astronomy 50 (2017) 82–103 

Contents lists available at ScienceDirect 

New Astronomy 

journal homepage: www.elsevier.com/locate/newast 

Variable inertia method: A novel numerical method for mantle 

convection simulation 

Kosuke Takeyama 

a , ∗, Takayuki R. Saitoh 

b , Junichiro Makino 

c , a , b , d 

a Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan 
b Earth-Life Science Institute,Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan 
c Department of Planetology, Graduate School of Science, Faculty of Science, Kobe University 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan 
d RIKEN Advanced Institute for Computational Science, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan 

h i g h l i g h t s 

• A novel method which enable us to solve the mantle convection explicitly is proposed. 
• The results of a novel method are in good agreement with standard benchmark test. 
• A novel method is suitable for parallel computations since it does not require global communication. 
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a b s t r a c t 

3D numerical simulations have been very useful for the understanding of mantle convection of the earth. 

In almost all previous simulations of mantle convection, the (extended) Boussinesq approximation has 

been used. This method is implicit in the sense that buoyancy force and viscosity are balanced, and 

allows the use of long timesteps that are not limited by the CFL condition. However, the resulting matrix 

is ill-conditioned, in particular since the viscosity strongly depends on the temperature. It is not well- 

suited to modern large-scale parallel machines. 

In this paper, we propose an explicit method which can be used to solve the mantle convection problem. 

If we can reduce the sound speed without changing the characteristics of the flow, we can increase the 

timestep and thus can use the explicit method. In order to reduce the sound speed, we multiplied the 

inertia term of the equation of motion by a large and viscosity-dependent coefficient. Theoretically, we 

can expect that this modification would not change the flow as long as the Reynolds number and the 

Mach number are sufficiently smaller than unity. We call this method the variable inertia method (VIM). 

We have performed an extensive set of numerical tests of the proposed method for thermal convection, 

and concluded that it works well. In particular, it can handle differences in viscosity of more than five 

orders of magnitude. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

It is important to understand mantle convection in the earth 

because it drives plate tectonics and provides information of the 

thermal history of the earth. Mantle convection has two unique 

characteristics which make numerical simulations very difficult. 

First, the viscosity of the mantle is very high. As a result, the 

timescale of the convection is many orders of magnitude longer 

than the dynamical timescale. Second, the viscosity is not only 
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high, but also strongly dependent on the temperature. It varies by 

more than ten orders of magnitude. 

In almost all previous simulations of mantle convection, two 

approximations have been used. The first one is to ignore the in- 

ertia term. In this approximation, we ignore the inertia term in 

the equation of motion because the Prandtl number ( Pr ) is very 

large. In other words, we solve the balance between buoyancy 

force and viscosity. The second one is the (extended) Boussinesq 

approximation. In the case of the extended Boussinesq approxima- 

tion, the thermal equation includes the effect of adiabatic compres- 

sion, but the equation of motion or continuity equation doesn’t. 

The approximated equation of motion is solved by using an itera- 

tive solver with an implicit manner. The timestep is generally eval- 

uated by using the energy equation and it is much longer than that 
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evaluated using the CFL and von-Neumann conditions ( Zhong 

et al., 2007 ). Therefore, we can use a large timestep. 

In order to solve mantle convection, several methods have been 

proposed. In early studies of mantle convection, the finite differ- 

ence (FD) method has been widely used. For example, Torrance 

and Turcotte (1971) and McKenzie et al. (1974) used the second- 

order FD method, and ( Christensen, 1984 ) solved variable vis- 

cosity fluid using an FD method. The finite element (FE) method 

is effective for solving problems with complicated geometry. King 

et al. (1990) developed ConMan code and ( Moresi and Gurnis, 

1996 ) developed Citcom code using the FE method. These codes 

are widely used in the field of mantle convection study. The 

SIMPLER algorithm is an efficient scheme based on the finite 

volume (FV) method, and ( Ogawa et al., 1991 ) used this algo- 

rithm and developed a 3D mantle convection code. Using the FV 

method, ( Kameyama et al. 2005 ) developed the ACuTE code, in 

which pseudo-compressibility and local time stepping techniques 

are used. Methods for 3D convection use iterative solvers. Since 

the iterative method requires global communication, it is difficult 

to achieve high efficiency on large-scale parallel supercomputers. 

Furthermore, high resolution calculation is very hard since conver- 

gence is slower for higher resolutions. The grid size of one of the 

highest resolution calculations is 512 by 512 by 128 ( Kameyama 

and Yuen, 2006 ). 

This problem of the implicit method exists not only in the sim- 

ulation of mantle convection, but also in any simulation of sub- 

sonic flows. In the case of flows with high Reynolds numbers, the 

so-called reduced speed of sound technique (RSST) is gaining pop- 

ularity ( Rempel, 2005 ). The basic idea of RSST is simply to make 

the fluid more compressible, instead of applying the approximation 

of incompressibility. We know that the incompressible approxima- 

tion can be applied to the original set of equations. As long as the 

flow is subsonic, we can apply the same incompressible approxi- 

mation to the set of equations modified by RSST. Therefore, the set 

of equations modified by RSST should give a solution close to that 

of the original set of equations. 

Hotta et al. (2012) applied RSST to the thermal convection zone 

of our Sun, and successfully performed the simulation with a reso- 

lution of 512 by 1024 by 3072 ( Hotta et al., 2014 ). The previous 

record size simulation of the convection zone of our Sun, with 

the standard incompressible assumption, was 257 by 1024 by 2048 

( Miesch et al., 2008 ). 

In the case of mantle convection, it is not enough to just apply 

RSST, since the Mach number ( M ) and the Reynolds number ( Re ) 

are both very small. Only the Mach number is increased by RSST. 

Therefore, we need a different approach. 

In this paper we present our new approach, the variable iner- 

tia method (VIM), with which we can increase the Mach number 

and Reynolds number simultaneously, without changing the char- 

acteristics of the convection by keeping the Rayleigh number ( Ra ) 

unchanged. As its name suggests, the basic idea of our method is 

to increase the inertia term (the left hand side) of the equation 

of motion. In the previous simulations of mantle convection, this 

term has been neglected, resulting in the instantaneous balance 

between the buoyancy term and the viscosity. The fact that we can 

ignore the inertia term suggests that we can increase it, without 

changing the behavior of the solution. 

Increasing the inertia term does increase both the Mach num- 

ber and the Reynolds number, but there is no guarantee that we 

can simultaneously bring both of these two numbers close to unity. 

Therefore, we need another parameter, which changes the Mach 

number and Reynolds number in a different way. We can achieve 

this by scaling the viscosity coefficient and thermal conductivity 

coefficient in a consistent manner, so that the Rayleigh number 

is unchanged. Thus, we can make both the Mach number and 

Reynolds number quite close to unity, and thereby make it possi- 

ble to apply an explicit method to the mantle convection problem. 

In doing so, we also change the Prandtl number by many orders of 

magnitude. We found that it seems necessary to keep Pr � 1. 

In this paper, we describe the variable inertia method for a ba- 

sic set of equations of mantle convection simulations. In Section 2 , 

we present equations for mantle convection. In Section 3 , we de- 

scribe our new method, the variable inertia method, in detail. 

In Section 4 , we describe the smoothed particle hydrodynamics 

(SPH) formulation we used to discretize the modified equations. 

In Section 5 , we show the results of numerical tests. In Section 6 , 

we present the results of the standard benchmark test proposed 

by Blankenbach et al. (1989) , and show the results of VIM with FD 

and SPH. In Section 7 , we summarize our results. 

2. Basic equations 

2.1. Governing equations for mantle convection 

The following set of equations describes the mantle convec- 

tion, 

∂ρ

∂t 
+ ∇ · (ρυ) = 0 , (1) 

ρ
d υ

dt 
= −∇p + ρg + ∇ · �, (2) 

ρc p 
dT 

dt 
− αT 

dp 

dt 
= ∇ · (k ∇T ) + ( � · ∇) · υ, (3) 

where ρ is the density, t is the time, υ is the velocity, p is the pres- 

sure, g is the gravity, c p is the specific heat at constant pressure, T 

is the temperature, α is the coefficient of thermal expansion, k is 

the coefficient of thermal conductivity, and � is the viscous stress 

tensor. The definition of � is given by 

�i j = μ

[
∂υi 

∂x j 
+ 

∂υ j 

∂x i 
− 2 

3 

(∇ · υ) δi j 

]
, (4) 

where μ is the coefficient of viscosity and i and j indicate the di- 

rections in the Cartesian coordinates. In this paper, we mainly use 

the Lagrangian form, since we use a particle method to discretize 

the basic equation. We can also apply the same transformation to 

the Eulerian form as will be shown in Section 6.4 . 

For the equation of state, we used the Tillotson equation of 

state ( Tillotson, 1962 ), which is expressed by 

p = 

⎛ 

⎜ ⎜ ⎝ 

a 0 + 

b 0 

u 

u 0 η2 
0 

+ 1 

⎞ 

⎟ ⎟ ⎠ 

ρu + A 0 η1 + B 0 η
2 
1 . (5) 

Here u is the internal energy and a 0 , b 0 , u 0 , A 0 , and B 0 are material 

parameters. For the test problems, we used parameters of granite, 

where a 0 = 0 . 5 , b 0 = 1 . 3 , u 0 = 16 MJ/kg, A 0 = 18 GPa, and B 0 = 18 

GPa. Here, η0 and η1 are defined as 

η0 = 

ρ

ρ0 

, (6) 

η1 = η0 − 1 , (7) 

where ρ0 = 2680 kg/m 

3 for granite. We assumed that the internal 

energy of the mantle is proportional to the temperature, 

du = c p dT . (8) 
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