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h i g h l i g h t s

• A binary galaxy model of interacting galaxies is used.
• We investigate the escape dynamics of stars in the binary system.
• We locate the several basins of escape and we relate them with the corresponding escape times.
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a b s t r a c t

The escape dynamics in an analytical gravitational model which describes the motion of stars in a binary

system of interacting dwarf spheroidal galaxies is investigated in detail. We conduct a numerical analysis dis-

tinguishing between regular and chaotic orbits as well as between trapped and escaping orbits, considering

only unbounded motion for several energy levels. In order to distinguish safely and with certainty between

ordered and chaotic motion, we apply the Smaller ALingment Index (SALI) method. It is of particular interest

to locate the escape basins through the openings around the collinear Lagrangian points L1 and L2 and relate

them with the corresponding spatial distribution of the escape times of the orbits. Our exploration takes place

both in the configuration (x, y) and in the phase (x, ẋ) space in order to elucidate the escape process as well

as the overall orbital properties of the galactic system. Our numerical analysis reveals the strong dependence

of the properties of the considered escape basins with the total orbital energy, with a remarkable presence of

fractal basin boundaries along all the escape regimes. It was also observed that for energy levels close to the

critical escape energy the escape rates of orbits are large, while for much higher values of energy most of the

orbits have low escape periods or they escape immediately to infinity. We hope our outcomes to be useful for

a further understanding of the escape mechanism in binary galaxy models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the years many studies have been devoted on the issue of es-

caping particles from dynamical systems. Especially the issue of es-

capes in Hamiltonian systems is directly related to the problem of

chaotic scattering which has been an active field of research over

the last decades and it still remains open (e.g., Bleher et al., 1988;

Jung and Scholz, 1988; Contopoulos and Kaufmann, 1992; Benet et al.,

1998; Motter and Lai, 2002; Seoane et al., 2006; 2007; Seoane and

Sanjuán, 2008; Seoane et al., 2009; Seoane and Sanjuán, 2010). The

problem of escape is a classical problem in simple Hamiltonian non-

linear systems (e.g., Aguirre et al., 2001; Aguirre and Sanjuán, 2003;

Aguirre et al., 2009; Barrio et al., 2008; Blesa et al., 2012; Zotos, 2014a)

as well as in dynamical astronomy (e.g., Hut and Bahcall, 1983; Benet

et al., 1996; 1998; de Moura and Letelier, 2000; Zotos, 2012a). Es-

caping orbits in the classical restricted three-body problem (RTBP) is
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another typical example (e.g., Nagler, 2004; 2005; de Assis and Terra,

2014).

Nevertheless, the issue of escaping orbits in Hamiltonian systems

is by far less explored than the closely related problem of chaotic

scattering. In this situation, a test particle coming from infinity ap-

proaches and then scatters off a complex potential. This phenomenon

is well investigated as well interpreted from the viewpoint of chaos

theory (e.g., Bleher et al., 1988; 1990; 1989; Jung, 1987; Jung et al.,

1999; 1995; Jung and Pott, 1989; Jung and Richter, 1990; Jung and

Scholz, 1987; Jung and Tel, 1991; Lai et al., 2000; 1993; Lau et al.,

1991; Lipp and Jung, 1999).

In open Hamiltonian systems an issue of great importance is the

determination of the basins of escape, similar to basins of attraction

in dissipative systems or even the Newton–Raphson fractal struc-

tures. An escape basin is defined as a local set of initial conditions

of orbits for which the test particles escape through a certain exit

in the equipotential surface for energies above the escape value.

Basins of escape have been studied in many earlier papers (e.g., Bleher

et al., 1988; Contopoulos, 2002; Kennedy and Yorke, 1991; Poon et al.,

1996). The reader can find more details regarding basins of escape in
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Contopoulos (2002), while the review (Zotos, 2014b) provides infor-

mation about the escape properties of orbits in a multi-channel dy-

namical system composed of a two-dimensional perturbed harmonic

oscillator. The boundaries of an escape basins may be fractal (e.g.,

Aguirre et al., 2009; Bleher et al., 1988) or even respect the more re-

strictive Wada property (e.g., Aguirre et al., 2001), in the case where

three or more escape channels coexist in the equipotential surface.

Escaping and trapped motion of stars in stellar systems is an an-

other issue of great importance. In a previous article Zotos (2012a),

we explored the nature of orbits of stars in a galactic-type potential,

which can be considered to describe local motion in the meridional

(R, z) plane near the central parts of an axially symmetric galaxy. It

was observed that apart from the trapped orbits there are two types

of escaping orbits, those which escape fast and those which need to

spend vast time intervals inside the equipotential surface before they

find the exit and eventually escape. The escape dynamics and the dis-

solution process of a star cluster embedded in the tidal field of a par-

ent galaxy were investigated in Ernst et al. (2008). Conducting a scan-

ning of the available phase space the authors managed to obtain the

basins of escape and the respective escape rates of the orbits, reveal-

ing that the higher escape times correspond to initial conditions of

orbits near the fractal basin boundaries. The investigation was ex-

panded into three dimensions in Zotos (2015) where we revealed

the escape mechanism of three-dimensional orbits in a tidally lim-

ited star cluster. Furthermore, Ernst and Peters (2014) explored the

escape dynamics in the close vicinity of and within the critical area

in a two-dimensional barred galaxy potential, identifying the escape

basins both in the phase and the configuration space.

The numerical approach of the above-mentioned papers serves as

the basis of this work. The main objective of our numerical explo-

ration is to determine which orbits escape and which remain trapped,

distinguishing simultaneously between regular and chaotic trapped

motion. Furthermore, we shall try to locate the escape basins which

reflect the orbital structure of the system and they also determine

through which channel the orbit escape to infinity. To our knowledge,

this is the first that the escape dynamics of a binary system of inter-

acting galaxies is numerically investigated. Our work is quite similar

to Zotos (2015) where we studied the escape process in a star cluster

rotating around its parent galaxy. In Zotos (2015) however, the dy-

namical system had three degrees of freedom (3D), while the present

one is only two-dimensional (2D).

The article is organized as follows: In Section 2 we present in de-

tail the structure and the properties of our binary galaxy model. All

the computational methods we used in order to determine the nature

of orbits are described in Section 3. In the following section, we con-

duct a systematic numerical investigation revealing the overall orbital

structure (bounded regions and basins of escape) of the binary galaxy

and showing how it is affected by the total orbital energy. Our paper

ends with Section 5, where the discussion and the main conclusions

are given.

2. The binary galaxy model

The aim of this research is to explore the properties of motion in

the planar softened circular restricted three-body problem. Our ana-

lytic gravitational model consists of a pair of dwarf spheroidal galax-

ies. The two spheroidal galaxies move in circular orbits around their

common center of gravity, which is assumed to be fixed at the origin

(0, 0) of the coordinates. The third body (a star test particle) moves in

the same plane under the gravitational field of the two galaxies. As a

first step we shall consider the case where the two galaxies are iden-

tical (same mass, same structure) similarly to the Copenhagen case of

the classical RTBP.

To model the dynamical properties of the spheroidal galaxies

we use the well known spherically symmetric Plummer potential

(Plummer, 1911). Therefore, the potential which describes the motion

around the first galaxy (hereafter galaxy G1) is given by the equation

�1(x, y) = −GM1√
R2 + c2

1

, (1)

where R2 = x2 + y2, while M1 is the mass and c1 the core radius of

galaxy G1. Similarly, galaxy G2 is described by the potential

�2(x, y) = −GM2√
R2 + c2

2

, (2)

where M2 is the mass and c2 the core radius of galaxy G2. The core

radius ci acts as a softening parameter which eliminates the problem

of critical collision orbits which is present in the classical RTBP.

We shall apply the theory of the softened circular restricted three-

body problem. The two galaxies move in circular orbits in an inertial

frame OXYZ with the origin at the center of mass of the system with

a constant angular velocity �p > 0, given by Kepler’s third law

�p =
√

GMt

d3
, (3)

where Mt = M1 + M2 is the total mass of the system, while d is the

distance between the centers of the two bodies. A clockwise, rotat-

ing frame Oxyz, is used with the axis Oz coinciding with the axis

OZ and the axis Ox coinciding with the straight line joining the cen-

ters of two galaxies. In this frame, which rotates with angular ve-

locity �p, the two centers have fixed positions C1(x, y) = (x1, 0) and

C2(x, y) = (x2, 0), respectively. The total gravitational potential which

is responsible for the motion of a star in the dynamical system of the

binary galaxy is

�t(x, y) = �1(x, y) + �2(x, y) + �rot(x, y), (4)

where

�1(x, y) = −GM1√
R2

1
+ c2

1

,

�2(x, y) = −GM2√
R2

2
+ c2

2

,

�rot(x, y) = −�2
p

2
(x2 + y2), (5)

and

R2
1 = (x − x1)

2 + y2, R2
2 = (x − x2)

2 + y2, (6)

with

x1 = −M2

Mt
d, x2 = R − M2

Mt
d = d + x1. (7)

In our study we use a system of galactic units where the unit of

length is 20 kpc, the unit of mass is 1.8 × 1011M� and the unit of time

is 0.99 × 108 years. The velocity unit is 197 km/s, while G is equal

to unity (G = 1). In these units, we use the values: M1 = M2 = 1,

c1 = c2 = 0.2 and d = 2. The values of these quantities remain con-

stant throughout securing also positive mass density everywhere and

free of singularities. The fact that the two galaxies are sufficiently

apart from each other (d = 40 kpc) allow us to assume that the tidal

phenomena are very small and therefore negligible.

The two galaxies move around their common mass center of the

system with angular velocities �p1 and �p2, given by

�p1 =
√

1

x1

(
−d�2(R)

dR

)
R=d

,

�p2 =
√

1

x2

(
d�1(R)

dR

)
R=d

. (8)
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