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h i g h l i g h t s 

• The capillary action in a crack on the surface of irregular asteroids is discussed. 
• The asteroid’s irregular gravitational potential influences the height of the liquid in the capillary. 
• Asteroid 433 Eros is taken as an example because the surface shape is irregular, elongated, and concave. 
• The global maximum point for the height of the liquid in the capillary is on the concave area of asteroid 433 Eros. 
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a b s t r a c t 

Some asteroids contain water ice, and a space mission landing on an asteroid may take liquid to the 

surface of the asteroid. Gas pressure is very weak on the surface of asteroids. Here we consider the cap- 

illary action in a crack on the surface of irregular asteroids. The crack is modeled as a capillary which 

has a fixed radius. An asteroid’s irregular gravitational potential influences the height of the liquid in the 

capillary. The height of the liquid in the capillary on the surface of such asteroids is derived from the 

asteroid’s irregular gravitational potential. Capillary mechanisms are expected to produce an inhomoge- 

neaous distribution of emergent liquid on the surface. This result is applied to asteroid 433 Eros, which 

has an irregular, elongated, and concave shape. Two cases are considered: (1) we calculate the height of 

the liquid in the capillary when the direction of the capillary is perpendicular to the local surface of the 

asteroid; (2) we calculate the height of the liquid in the capillary when the direction of the capillary is 

parallel to the vector from the center of mass to the surface position. The projected height in the capillary 

on the local surface of the asteroid seems to depend on the assumed direction of the capillary. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Previous studies have claimed that Earth’s water originated 

from asteroids ( Morbidelli et al., 20 0 0; Mottl et al., 20 07; Campins 

et al., 2010 ). Kanno et al. (2003) analyzed the wavelength of in- 

frared spectra and confirmed the presence of water ice on a D 

type asteroid. A meteoroid may be released from an asteroid fol- 

lowing a collision and thus bring material to Earth ( Treiman et al., 

20 04; Vereš et al., 20 08; Ray and Misra, 2014; Patil et al., 2015 ). 

A meteoroid may also be released from Mars and bring water 

to Earth ( Mitton, 1992 ). Treiman et al., (2004) studied the Serra 

de Magé eucrite meteorite, which presumably came from asteroid 

4 Vesta, and found quartz in the meteorite; they concluded that 
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the quartz was deposited by liquid water, and the water proba- 

bly came from outside 4 Vesta. Campins et al., (2010) reported 

that there exist water ice on the surface of asteroid 24 Themis, 

and that the water ice has a widespread distribution. Comets also 

contain water ice. Sunshine et al., (2006) detected solid water 

ice on the surface of comet 9P/Tempel and pointed out that the 

surface deposits are loose aggregates. Taylor (2015) reported that 

water exists in the Eucrite meteorites which came from asteroid 

4 Vesta. 

We focus here on the height of the liquid surface water on 

the surface of an asteroid, which is related to the surface equilib- 

rium and surface motions on the asteroid. On the surface of aster- 

oids in the inner Solar system, liquid water can exist ( Cohen and 

Coker, 1999; Yurimoto et al., 2014 ). Besides, a very transient pres- 

ence of material in the liquid phase can exist in the active areas 

of cometary nuclei by solar heating ( Miles and Faillace, 2011 ). Pre- 

vious works have discussed the dynamics of surface equilibria on 

a rotating ellipsoid ( Guibout and Scheeres, 2003 ), the hopping on 
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a flat surface of a rotating ellipsoid ( Bellerose and Scheeres, 2008; 

Bellerose et al., 2009 ), the contact motion and impact on the sur- 

face of asteroid 25143 Itokawa ( Tardivel and Scheeres, 2014 ), as 

well as the topological classification of equilibria in the potential 

of asteroids ( Jiang et al., 2014 ). Guibout and Scheeres (2003) found 

that the stability of surface equilibria on an ellipsoid ties to the 

shape of the ellipsoid. Bellerose and Scheeres (2008) discussed the 

dynamical behavior around the stable and unstable surface equi- 

libria on a rotating ellipsoid to model the motion on an asteroid’s 

surface. Jiang et al. (2014) used an accurate asteroidal shape model 

and discussed equilibria and motion around equilibria in the po- 

tential of four asteroids: (216) Kleopatra, (1620) Geographos, (4769) 

Castalia, and (6489) Golevka. Jiang (2015) finds that the equilib- 

rium stability and the stability of periodic orbits around equilib- 

ria have some corresponding relationships. However, the height 

that surface water reaches on an asteroid depends on the irreg- 

ular shape and gravitational potential; different surfaces produce 

different heights, which may lead to different friction factors and 

also affect the stability of equilibria. 

We model a crack on the asteroids as a capillary. We study 

the height that a liquid can reach within this capillary that is lo- 

cated on the surface of irregular asteroids. The height of liquid in 

the capillary is constant when the position of the capillary varies 

over the surface of a spherical-shaped body; however, the height 

is time-variant when the position of the capillary varies over the 

surface of an irregular-shaped asteroid. The results can be applied 

to two areas. First, we can study the water ice distribution on as- 

teroids; different heights of the liquid in the capillary may pro- 

duce different distributions of water ice on the surface ( Campins 

et al., 2010 ). Second, the height a liquid reaches can affect the 

electrostatic and rotational ejection of gas and dust grains ( Oberc, 

1997 ) on the surface of minor celestial bodies. Under the effect of 

the solar radiation pressure, the ejection will form a mini-fountain 

on the surface; the change in height of the liquid in the capil- 

lary causes the height and radius of the fountain envelope to vary 

( Oberc, 1997 ). 

The gravitational field of asteroids influences the height a liquid 

can reach in a capillary; this is the case for a single asteroid, binary 

asteroids, and multiple asteroid systems. We present the height a 

liquid in a capillary can reach on the surface of an asteroid in a 

multiple asteroid system. Asteroid 433 Eros is taken as an example 

because the surface shape is irregular, elongated, and concave. The 

liquid’s height depends on the direction of the capillary; we cal- 

culated two cases, in the first case, the capillary’s direction is per- 

pendicular to the asteroid’s local surface; in the second case, the 

capillary’s direction is parallel to the line segment from the aster- 

oid’s center of mass to the surface position. The results show that 

a fluid can be brought to the surface from the interior by capillary 

mechanisms. The process is inhomogeneous, and it is more likely 

that certain regions of the surface can be much more efficient than 

others, due to the interplay of shape, gravitational field and possi- 

ble density of cracks. 

2. The height of a liquid in the capillary on the surface of 

asteroids 

Let us consider a crack on the surface of an asteroid. As we 

stated in the previous section, we use a capillary which has a fixed 

radius to model the crack. Denote r c as the radius of the capillary. 

The contact angle θ is defined as the angle between the liquid’s 

surface and the outline of the solid’s contact surface. The radius of 

curvature of the liquid surface is denoted as R , where R is the ra- 

dius of a circle which best fits the liquid surface’s normal section, 

R = − r c 
cos θ

. Let γ be the surface tension, then according to the Ju- 

rin’s rule, the liquid height in the capillary is h = 

2 γ cos θ
ρg a r c 

, where ρ

is the liquid density and g a is the gravitational acceleration on the 

surface of the asteroid. Let α be the angle between the capillary 

and the direction of the gravitational force, and l be the length of 

liquid in the capillary, then l = 

h 
sin α . 

The gravitational field of an asteroid can be computed by as- 

suming a shape approximated by means of a polyhedron model 

using observational data. The test point has the Cartesian coordi- 

nates ( x, y, z ) , the position of the differential mass dm is ( ξ , η, ς ) , 

then the vector from the test point to the differential mass is r = 

( ξ − x, η − y, ς − z ) = ( 	x, 	y, 	z ) . Using the polyhedron model, 

the asteroid’s gravitational potential ( Werner, 1994; Werner and 

Scheeres, 1997 ) can be expressed by Eq. (1) : 

U = G 

∫ ∫ ∫ 
Body 

1 

r 
d m = 

1 

2 

Gσ
∑ 

e ∈ edges 

r e � E e � r e · L e 

− 1 

2 

Gσ
∑ 

f∈ faces 

r f � F f � r f · ω f . (1) 

In addition, the gravitational force ( Werner and Scheeres, 1997 ) 

is given by Eq. (2) : 

∇U = −Gσ
∑ 

e ∈ edges 

E e � r e · L e + Gσ
∑ 

f∈ faces 

F f � r f · ω f , (2) 

and the Hessian matrix of the gravitational potential is given by 

Eq. (3) : 

∇ (∇ U) = Gσ
∑ 

e ∈ edges 

E e · L e − Gσ
∑ 

f∈ faces 

F f · ω f , (3) 

where G = 6.67 × 10 −11 m 

3 kg −1 s −2 is the gravitational constant, r

is the norm of r , σ is the bulk density of the asteroid, ∇ is the 

gradient operator; r e and are r f are body-fixed vectors, r e is from 

the test point to some fixed point on the polyhedron’s edge, while 

r f is from the test point to the point on the polyhedron’s surface; 

E e and F f are edge- and face- dyads, respectively; L e represents 

the integration factor between the test point and the polyhedron’s 

edge, L e = ln 

a + b+ e 
a + b−e 

, a and b are distances between the test point 

and the edge’s two ends, e is the edge length, ω f represents the 

signed solid angle subtended by the triangle region when viewed 

from the test point. 

Let ω be the rotational velocity of the asteroid, and ω be the 

norm of the vector ω, then the body-fixed frame is defined through 

ω = ω e z . Then the effective potential V and its gradient ( Jiang 

and Baoyin, 2014; Jiang, 2015; Jiang, et al. 2015 ) can be given by 

Eqs. (4) and ( 5 ): 

V = U − M 

ω 

2 

2 

(
x 2 + y 2 

)
, (4) 

and ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∂V ( r ) 
∂x 

= −M ω 

2 x + 

∂U ( r ) 
∂x 

∂V ( r ) 
∂y 

= −M ω 

2 y + 

∂U ( r ) 
∂y 

∂V ( r ) 
∂z 

= 

∂U ( r ) 
∂z 

. (5) 

where M is the asteroid’s mass. Then the gravitational acceleration 

of the liquid on the surface of the asteroid is given by Eq. (6) : 

g a = ∇V. (6) 

Assume the capillary’s direction is parallel to the line segment 

from the asteroid’s center of mass to the surface position. Substi- 

tuting Eq. (6) into the expression for the height of the liquid yields 

Eq. (7) : 

h = 

2 mγ Gσ cos θ

ρr c ∇V 

, (7) 

where m is the liquid mass. 
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