
New Astronomy 47 (2016) 97–104 

Contents lists available at ScienceDirect 

New Astronomy 

journal homepage: www.elsevier.com/locate/newast 

Fractal structures for the Jacobi Hamiltonian of restricted three-body 

problem 

G. Rollin 

a , J. Lages a , ∗, D.L. Shepelyansky 

b 

a Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS, Université de Franche-Comté, Besançon 25030, France 
b Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse 31062, France 

h i g h l i g h t s 

• Poincaré section of survival orbits in binary stars has a strange repeller. 
• Density of survival particles has a spiral form. 
• Fractal dimension of the strange repeller is similar to galaxy fractal dimension. 
• Survival probability drops algebraically due to stability islands. 
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a b s t r a c t 

We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem 

and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different 

values of mass ratio of binary bodies and of Jacobi integral of motion. We find that the spiral fractal 

structure of the Poincaré section leads to a spiral density distribution of particles remaining in the sys- 

tem. We also show that the initial exponential drop of survival probability with time is followed by the 

algebraic decay related to the universal algebraic statistics of Poincaré recurrences in generic symplectic 

maps. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The restricted three-body problem was at the center of stud- 

ies of dynamics in astronomy starting from the works of Euler 

(1772) , Jacobi (1836) and Poincaré (1890) . The progress in the un- 

derstanding of this complex problem in XXth and XXIth centuries 

is described in the fundamental books ( Szebehely, 1967; Hénon, 

1997; 2001; Valtonen and Karttunen, 2006 ). As it was proven by 

Poincaré (1890) in the general case this system is not integrable 

and only the Jacobi integral is preserved by the dynamics ( Jacobi, 

1836 ). Thus a general type of orbits has a chaotic dynamics with a 

divided phase space where islands of stability are embedded in a 

chaotic sea ( Chirikov, 1979; Lichtenberg and Lieberman, 1992; Ott, 

1993 ). 

In this work we consider the Planar Circular Restricted Three- 

Body Problem (PCRTBP). This is an example of a conservative 

Hamiltonian system (in a synodic or rotating reference frame of 
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two binaries) with two degrees of freedom. However, this is an 

open system since some trajectories can escape to infinity (be ion- 

ized) so that the general theories of leaking systems ( Altmann 

et al., 2013 ) and naturally open systems (e.g. Contopoulos and Efs- 

tathiou, 2004 ) find here their direct applications. It is known that 

such open systems are characterized by strange repellers related to 

non-escaping orbits and by an exponential time decay of probabil- 

ity to stay inside the system. However, as we show, in the PCRTBP 

system with a divided phase space one generally finds an alge- 

braic decay of probability of stay related to an algebraic statistics 

of Poincaré recurrences in Hamiltonian systems (see e.g. Chirikov 

and Shepelyansky, 1981; Karney, 1983; Chirikov and Shepelyan- 

sky, 1984; Meiss and Ott, 1985; Chirikov and Shepelyansky, 1999; 

Cristadoro and Ketzmerick, 2008; Shevchenko, 2010; Frahm, and 

Shepelyansky, 2010 , and Refs. therein). This effect appears due to 

long sticking of trajectories in a vicinity of stability islands and 

critical Kolmogorov–Arnold–Moser (KAM) curves. Thus an interplay 

of fractal structures and algebraic decay in the PCRTBP deserves 

detailed studies. 

Among the recent studies of the PCRTBP we point out the ad- 

vanced results of Nagler (20 04, 20 05) where the crash probability 
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dependence on the size of large bodies has been studied and the 

fractal structure of non-escaping orbits has been seen even if the 

fractal dimensions were not determined. This research line was 

extended in Astakhov and Farrelly (2004) ; Astakhov et al. (2005) 

with a discussion of possible applications to the Kuiper-belt and 

analysis of various types of orbits in Barrio et al. (2009) ; Zotos 

(2015) . The analysis of orbits in three dimensional case is reported 

in Makó et al. (2010) and basin of escaping orbits around the 

Moon has been determined in de Assis and Terra (2014) . 

In this work we determine the fractal dimension of non- 

escaping orbits for the PCRTBP with comparable masses of heavy 

bodies and consider the properties of Poincaré recurrences and the 

decay probability of stay in this system. The system description is 

given in Section 2 , the structure of strange repeller is analyzed in 

Section 3 , the decay of Poincaré recurrences and probability of stay 

are studied in Section 4 , a symplectic map description of the dy- 

namics is given in Section 5 , discussion of the results is presented 

in Section 6 . 

2. System description 

The PCRTBP system is composed of a test particle evolving in 

the plane of a circular binary whose primaries have masses m 1 = 

1 − μ and m 2 = μ with m 1 > m 2 . In the synodic frame the dynam- 

ics of the test particle is given by the Hamiltonian 

H(p x , p y , x, y ) = 

1 

2 

(
p 2 x + p 2 y 

)
+ yp x − xp y + V (x, y ) (1) 

where x and y are the test particle coordinates, p x = ˙ x − y and p y = 

˙ y + x are the corresponding canonically conjugated momenta, and 

V (x, y ) = − ( 1 − μ) 
(
( x − μ) 

2 + y 2 
)1 / 2 

− μ
(
( x + ( 1 − μ) ) 

2 + y 2 
)1 / 2 

(2) 

is the gravitational potential of the two primaries. Here the dis- 

tance between primaries is 1, the total mass m 1 + m 2 = 1 , the 

gravitational constant G = 1 , consequently the rotation period of 

the binary is 2 π . Hamiltonian (1) with potential (2) represents the 

Jacobi integral of motion ( Jacobi, 1836 ). In the following we define 

the Jacobi constant as C = −2 H. This Jacobi Hamiltonian describes 

also the planar dynamics of an electrically charged test particle ex- 

periencing a perpendicular magnetic field and a classical hydrogen- 

like atom with a Coulomb-like potential (2) . 

We aim to study the dynamics of particles evolving on escap- 

ing and non-escaping orbits around the binary. We perform inten- 

sive numerical integration of the equations of motion derived from 

Hamiltonian (1) using an adaptive time step 4th order Runge–Kutta 

algorithm with Levi-Civita regularization in the vicinity of the pri- 

maries ( Levi-Civita, 1920 ). The achieved accuracy is such as the in- 

tegral of motion relative error is less than 10 −9 ( 10 −5 ) for more 

than 91% (99%) of integration steps. For different Jacobi constants 

C , we randomly inject up to 10 8 test particles in the 1.3 ≤ r ≤ 2.5 

ring with initial radial velocity ˙ r = 0 and initial angular velocity 
˙ φ < 0 ( r and φ are polar coordinates in the synodic frame). Each 

test particle trajectory is followed until the integration time attains 

t S = 10 4 or until the region r > R S = 10 is reached where we con- 

sider that test particles are escaped (ionized) from the binary. 

3. Strange repeller structures 

In phase space, orbits are embedded in a three-dimensional 

surface defined by the Jacobi constant C . In order to monitor 

particle trajectories we choose a two-dimensional surface defined 

by an additional condition. Here we choose either the condi- 

tion ( ̇ r = 0 , ˙ φ < 0) to represent Poincaré section as a ( x , y )-plane 

( Figs. 1 , 5–7 and 10 ) or the condition (y = 0 , p y > 0) to represent 

Fig. 1. ( x , y ) – Poincaré sections of the Jacobi Hamiltonian (1) with ˙ r = 0 and ˙ φ < 0 . 

Poincaré sections for a binary with μ = 0 . 3 , C = 3 are shown in panels: ( a ) at a 

large scale, ( b ) at an intermediate scale, ( c ) close-up in the vicinity of the primary 

mass. Panel ( d ) shows the Poincaré section for μ = 0 . 5 and C = 3 . Red regions are 

forbidden since there ˙ x 2 + ˙ y 2 < 0 . Black dots represent non-escaped orbits staying 

inside the r < R s = 10 region after time t = 10 . Invariant KAM curves (blue dots) 

are obtained choosing initial conditions inside KAM islands. The red (blue) star 

( ) gives the position of the 1 − μ mass ( μ mass). The Poincaré section is obtained 

with orbits of N = 10 7 test particles initially placed at random in the region 1.3 ≤ r 

≤ 2.5. Particles as escaped once r > R S . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article). 

Fig. 2. ( p x , x ) – Poincaré section of the Jacobi Hamiltonian (1) with y = 0 and p y > 0 

for a binary with μ = 0 . 3 , C = 3 (corresponding to Fig. 1 a , b , c ). Panel ( a ): Poincaré

section at large scale; panel ( b ): zoom in the vicinity of primaries. Black dots repre- 

sent non-escaped orbits staying inside the r < R s = 10 region after time t = 10 . Blue 

dots represent bounded orbits inside stability islands. The red (blue) star ( ) gives 

the position of the primary (secondary) mass as in Fig. 1 . The Poincaré section is 

obtained with the same orbits as in Fig. 1 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article). 

Poincaré section as a ( p x , x )-plane ( Fig. 2 ). A similar approach was 

also used in Nagler (2004, 2005) . 

We show in Fig. 1 (panels a , b , c ) an example of ( x , y ) – Poincaré

section of the Jacobi Hamiltonian (1) for mass parameter μ = 0 . 3 

and Jacobi constant C = 3 . Red regions correspond to forbidden 

zones where particles would have imaginary velocities. Inside cen- 

tral islands in the close vicinity of primaries blue points mark out 

regular and chaotic orbits of bounded motion. In particular, the 

KAM invariant curves ( Lichtenberg and Lieberman, 1992 ) can be 

seen e.g. in Fig. 1 c . In Fig. 1 a , the trace of non-escaped chaotic or- 

bits (black points) remaining inside the disk r < R S = 10 after time 

t = 10 defines a set of points forming two spiral arms centered on 

the binary center of mass. This set has a spiral structure of strange 

repeller since orbits in its close vicinity rapidly move away from 
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