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h i g h l i g h t s

• Duration distribution of Swi f t/BAT gamma-ray bursts (GRBs) is investigated.
• For GRBs with known z, the analysis is performed in the observer and rest frames.
• Mixtures of two and three log-normal distributions are fitted.
• Maximum log-likelihood, Akaike and Bayesian information criterion are employed to choose the best fit.
• It is found that the data is better followed by a two-Gaussian.
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a b s t r a c t

The duration distribution of 947 GRBs observed by Swift/BAT, as well as its subsample of 347 events

with measured redshift, allowing to examine the durations in both the observer and rest frames, are

examined. Using a maximum log-likelihood method, mixtures of two and three standard Gaussians are

fitted to each sample, and the adequate model is chosen based on the value of the difference in the

log-likelihoods, Akaike information criterion and Bayesian information criterion. It is found that a two-

Gaussian is a better description than a three-Gaussian, and that the presumed intermediate-duration class

is unlikely to be present in the Swift duration data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Gamma-ray bursts (GRBs) were detected by military satellites

Vela in late 1960’s. Mazets et al. (1981) first pointed out hints for a

bimodal distribution of Tb (taken to be the time interval within

which fall 80%–90% of the measured GRB’s intensity) drawn for

143 events detected in the KONUS experiment. Burst and Transient

Source Explorer (BATSE) onboard the Compton Gamma Ray Ob-

servatory (CGRO) provided data that were further investigated by

Kouveliotou et al. (1993), and led to establishing the common clas-

sification of GRBs into short (T90 < 2 s) and long (T90 > 2 s), where

T90 is the time during which 90% of the burst’s fluence is accumu-

lated, referred to as the duration of a GRB. The progenitors of long

GRBs are associated with supernovae related with collapse of mas-

sive stars (Woosley and Bloom, 2006). Progenitors of short GRBs

are thought to be NS-NS or NS-BH mergers (Nakar, 2007), and no

connection between short GRBs and supernovae has been proven

(Zhang et al., 2009). It was observed that durations T90 seem to ex-

hibit log-normal distributions which were thereafter fitted to short
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and long GRBs (McBreen et al., 1994; Koshut et al., 1996; Kouve-

liotou et al., 1996; Horváth, 2002).

The existence of an intermediate-duration GRB class, consisting

of GRBs with T90 in the range 2–10 s, was put forward (Horváth,

1998; Mukherjee et al., 1998) based on the analysis of BATSE

3B data. It was supported (Horváth, 2002; Chattopadhyay et al.,

2007) with the use of the complete BATSE dataset. Evidence

for a third log-normal component was also found in Swift/BAT

data (Horváth et al., 2008; Zhang and Choi, 2008; Huja et al.,

2009; Horváth et al., 2010). Interestingly, Zitouni et al. (2015) re-

examined the BATSE current catalog as well as the Swift dataset,

and found that a mixture of three Gaussians (3-G) fits the log T90

data from Swift better than a two-Gaussian (2-G), while in the

case of BATSE statistical tests did not support the presence of

a third component (hereinafter, the log T90 distributions are con-

sidered, and are shortly referred to as durations as well). Re-

garding Fermi/GBM (Gruber et al., 2014; von Kienlin et al., 2014),

a 3-G is a better fit than a 2-G,1 however the presence of a

1 Adding parameters to a nested model always results in a better fit (in the

sense of a lower χ2 or a higher maximum log-likelihood) due to more freedom

given to the model to follow the data, i.e. due to introducing more free parameters.
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third group in the duration distribution was found to be unlikely

(Tarnopolski, 2015a; 2015b), which was based on the fact that

the log T90 distribution is bimodal, i.e. it exhibits two local max-

ima (Tarnopolski, 2015a), and that a mixture of two skewed com-

ponents follows the data better than a standard three-Gaussian

(Tarnopolski, 2015b).

The Swift data were re-examined by Bromberg et al. (2013), and

they found that a limit of 0.8 s is more suitable for the GRBs ob-

served by Swift than the conventional 2 s limit of Kouveliotou et al.

(1993). It should be stressed that Bromberg et al. (2013) applied a

different approach than Kouveliotou et al. (1993) and Tarnopolski

(2015c): a functional form of the T90 distribution different from the

commonly used phenomenological log-normal distribution, com-

ing from a physical model for the short duration collapsar distri-

bution, and by means of exceeding a probability threshold that a

GRB with a given T90 is a non-collapsar. Interestingly, the limits

for BATSE and Fermi data are consistent with the 2 s limit, and also

with the results obtained by Tarnopolski (2015c), where based on

the well-established conjecture that durations T90 are log-normally

distributed, the limit between short and long GRBs may be placed

at the local minimum, which is detector-dependent. Finally, many

works in which a 2-G was fitted to the log T90 distribution showed

a significant overlap of components corresponding to short and

long GRBs (McBreen et al., 1994; Koshut et al., 1996; Horváth,

2002; Zhang and Choi, 2008; Huja et al., 2009; Bromberg et al.,

2013; Barnacka and Loeb, 2014; Tarnopolski, 2015c; Zitouni et al.,

2015).

The aim of this paper is to analyze the current dataset of

Swift/BAT GRBs, and to test whether a greater sample of 947 events

leads to conclusions other than Zitouni et al. (2015) arrived at for a

set of 757 events. Moreover, a relevant increase of GRBs with mea-

sured redshift—347 compared to 248 GRBs examined by Zitouni

et al. (2015)—provides an opportunity for a re-evaluation of the

GRB properties that are, after moving to the rest frame, not af-

fected by cosmological factors. This paper is organized in the fol-

lowing manner. In Section 2 the datasets, fitting method and sta-

tistical criteria used to infer the validity of the models applied are

described. Section 3 presents the results of fitting a 2-G and 3-G

to the whole sample of 947 GRBs, as well as a subsample of 347

events in both the observer and rest frames. Section 4 is devoted

to discussion, and gathers concluding remarks.

2. Methods

2.1. Dataset

The Swift dataset contains 947 GRBs2 with measured duration

T90, of which 9% are short (87 events). 347 GRBs have their redshift

known, and those constitute the second sample examined herein.

It consists of 324 long GRBs and 23 short ones. A scatter plot of

this subsample on a log T90 − z plane is drawn in Fig. 1. The median

redshift for short and long GRBs is equal to z̃short = 0.72 and z̃long =
1.90, respectively. The intrinsic durations are calculated according

to

T int
90 = T obs

90

1 + z
. (1)

Distributions of the log T90 for the observed and intrinsic durations

are examined hereinafter, and are displayed together with the dis-

tribution of the whole sample in Fig. 2.

The important question is whether this improvement is statistically significant, and

whether the model is justified.
2 http://swift.gsfc.nasa.gov/archive/grb_table.html, accessed on September 30,

2015.

2.2. Fitting method

Two standard fitting techniques are commonly applied: χ2 fit-

ting (Voinov et al., 2013) and maximum likelihood (ML, Kendall

and Stuart 1973). For the first, data needs to be binned, and despite

various binning rules are known (e.g. Freedman–Diaconis, Scott,

Knuth etc.), they still leave place for ambiguity, as it might hap-

pen that the fit may be statistically significant on a given signifi-

cance level for a number of binnings (Huja et al., 2009; Koen and

Bere, 2012; Tarnopolski, 2015a). The ML method is not affected by

this issue and is therefore applied herein. However, for display pur-

poses, the binning was chosen based on the Freedman–Diaconis

rule.

Having a distribution with a probability density function (PDF)

given by f = f (x; θ ) (possibly a mixture), where θ = {θi}p
i=1

is a set

of parameters, the log-likelihood function is defined as

Lp(θ ) =
N∑

i=1

ln f (xi; θ ), (2)

where {xi}N
i=1 are the datapoints from the sample to which a dis-

tribution is fitted. The fitting is performed by searching a set of

parameters θ̂ for which the log-likelihood is maximized. When

nested models are considered, the maximal value of the log-

likelihood function Lmax ≡ Lp(θ̂ ) increases when the number of

parameters p increases.

A mixture of k standard normal (Gaussian) distributions:

fk(x) =
k∑

i=1

Ai√
2πσi

exp

(
− (x − μi)

2

2σ 2
i

)
, (3)

is considered. It is described by p = 3k − 1 free parameters: k pairs

(μi, σ i) and k − 1 weights Ai, satysfying
∑k

i=1 Ai = 1 due to normal-

ization of a PDF. Therefore, p = 5 for a 2-G, and p = 8 for a 3-G.

2.3. Statistical criteria

If one has two fits such that Lp2,max > Lp1,max, then twice

their difference, 2�Lmax = 2(Lp2,max − Lp1,max), is distributed like

χ2(�p), where �p = p2 − p1 > 0 is the difference in the number

of parameters (Kendall and Stuart, 1973; Horváth, 2002). If a p-

value associated with the value of χ2(�p) does not exceed the sig-

nificance level α, one of the fits (with higher Lmax) is statistically

better than the other. For instance, for a 2-G and a 3-G, �p = 3,

and despite that, according to Footnote 1, Lmax, 3−G > Lmax, 2−G

holds always, twice their difference provides a decisive p-value.

For nested as well as non-nested models, the Akaike informa-

tion criterion (AIC) (Akaike, 1974; Burnham and Anderson, 2004;

Liddle, 2007) may be applied. The AIC is defined as

AIC = 2p − 2Lp,max. (4)

A preferred model is the one that minimizes AIC. The formulation

of AIC penalizes the use of an excessive number of parameters,

hence discourages overfitting. It prefers models with fewer param-

eters, as long as the others do not provide a substantially better fit.

The expression for AIC consists of two competing terms: the first

measuring the model complexity (number of free parameters), and

the second measuring the goodness of fit (or more precisely, the

lack of thereof). Among candidate models with AICi, let AICmin de-

note the smallest. Then,

Pri = exp

(
−�i

2

)
, (5)
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