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h i g h l i g h t s

• A graphics-card implementation of a Monte-Carlo simulation is presented.
• Major applications are the diffusion of cosmic rays and solar energetic particles.
• Due to the SIMD model and shared memory, the code runs faster than the CPU version.
• The code decreases the computational cost of such simulations.
• The comparison with an existing implementation shows good agreement.
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a b s t r a c t

A graphics card implementation of a test-particle simulation code is presented that is based on the CUDA ex-

tension of the C/C++ programming language. The original CPU version has been developed for the calculation

of cosmic-ray diffusion coefficients in artificial Kolmogorov-type turbulence. In the new implementation, the

magnetic turbulence generation, which is the most time-consuming part, is separated from the particle trans-

port and is performed on a graphics card. In this article, the modification of the basic approach of integrating

test particle trajectories to employ the SIMD (single instruction, multiple data) model is presented and veri-

fied. The efficiency of the new code is tested and several language-specific accelerating factors are discussed.

For the example of isotropic magnetostatic turbulence, sample results are shown and a comparison to the

results of the CPU implementation is performed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Describing the stochastic motion of particles in a turbulent

medium has been a long-standing problem. Early examples are dif-

fusion (Fick, 1855), Brownian motion (Einstein, 1905), and random

walks (Chandrasekhar, 1943), which are all related on the level of

the individual particles. An important class of such problems is given

by electrically charged particles moving in a tenuous magnetized

plasma, which has the additional difficulty that the turbulence is typ-

ically anisotropic if a large-scale magnetic field is present. In addi-

tion, turbulent electric fields can lead to diffusion also in momentum

space—the so-called stochastic acceleration. Prominent examples in-

clude the transport and acceleration of cosmic rays (Schlickeiser,

2002; Duffy and Blundell, 2005; Shalchi, 2009; Tautz, 2012), solar en-

ergetic particles causing the so-called space weather (Scherer et al.,

2005; Bothmer and Daglis, 2006), and particle transport in fusion

plasmas (Bourdelle, 2005; Angioni et al., 2009).
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In many scenarios that involve turbulent transport, particularly in

the astrophysical theater, an analytical solution is often too simple

and misses important contributions from non-linear dynamics. Re-

cently, therefore, self-consistent simulations have been favored that

are based either on (magneto) hydrodynamics, smoothed particle hy-

drodynamics, the particle-in-cell approach, or a combination forming

so-called hybrid simulations. The advantage is that the interaction

of electromagnetic fields and plasma particles can be treated self-

consistently. The analytical understanding, however, is severely im-

peded by the complexity of the covered dynamics. In addition, these

simulations are computationally very demanding but are neverthe-

less limited with respect to the large scales, which poses a problem

for example for extended astrophysical systems with curved mean

magnetic fields.

Analytical theories thus remain in use, to treat either plasma

instabilities (test-wave approach) or particle diffusion (test-particle

ansatz). The latter is particularly applicable for the propagation of

cosmic rays and solar energetic particles, which have a significantly

lower number density than the ambient plasma. The back-reaction

of the particles on the plasma can thus be neglected. To test the va-

lidity of the test-particle calculations, Monte-Carlo simulations have
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been widely used as a tool that operates under the exact same condi-

tions and assumptions. By averaging over the trajectories of charged

particles being scattered by turbulent electromagnetic fields, diffu-

sion coefficients, intensity time profiles, and/or information about the

anisotropy of a particle distribution can be obtained. While in some

cases the integration of a thousand particles is sufficient, there are

some problems that easily rfuire millions of particles (e. g., Tautz

et al., 2013), thereby again making this approach computationally

expensive.

Recently, the use of graphics cards for scientific computations has

received considerable attention. The main reason is that the cost of a

typical high-performance graphics card is much lower compared to

that for a comparable amount of CPU processing cores. The program-

ming effort, however, is increased. Here, the CUDA programming lan-

guage by Nvidia (2011), which is an extension of C/C++, comes in

handy. This ansatz allows the modification and extension of already

existing programs so that only those parts have to be modified that

will be executed on the graphics processors. Here, the adaptation of

the Padian code (Tautz, 2010) for the use with graphics cards is pre-

sented. While the principal approach remains unchanged, there are

some peculiarities that merit a detailed discussion.

The paper is organized as follows. In Section 2, the analytical and

numerical aspects of describing cosmic-ray transport are briefly out-

lined. The CUDA implementation is presented in Section 3 together

with a discussion of some optimization issues. Section 4 contains

benchmark results in order to illustrate the computational speed-up,

and sample results for isotropic magnetostatic turbulence, accompa-

nied by a comparison with the previous CPU implementation of the

transport code. A brief summary and a discussion of the results is

given in Section 5.

2. Cosmic-ray transport

Test particle theory attempts to describe the particle motion in

turbulent electromagnetic fields without taking into account the

back-reaction of the particles on the fields. Analytically, the random

walk of individual particles is identified with a diffusive expansion

of a fluid by comparing the exponents in the random-walk proba-

bility distribution (Chandrasekhar, 1943) and the solution of the dif-

fusion equation (Fick, 1855). However, no all-encompassing results

have been found so far except for very simplified turbulence models.

Usually, a diffusive behavior of the particle motion is assumed so that

the formalism of diffusion can be applied to the scattering mean-free

paths. In three dimensions, the resulting Einstein–Smoluchowski (cf.

Islam, 2004) relation reads κ = λ〈v〉/3, where κ and λ are the diffu-

sion coefficient and the mean-free path, respectively.

2.1. Analytical transport theory

The standard theory of cosmic-ray diffusion, the “classic” quasi-

linear theory (QLT; see Jokipii, 1966) has been able to describe the

diffusion coefficients successfully for simplified turbulence models

such as slab turbulence, where the turbulent fields depend only

on the spatial coordinate along the mean magnetic field (e. g.,

Michałek and Ostrowski, 1996). However, it has also been demon-

strated (Tautz et al., 2006) that QLT often results in singularities for

time-independent magnetic turbulence, because it cannot describe

the so-called 90° scattering, where particles reverse their motion

in the direction parallel to the ambient magnetic field (Tautz et al.,

2006).

To solve this problem, a number of non-linear theories have been

proposed (e. g., Shalchi, 2009; Tautz, 2012), some of which actually

give an accurate description of the transport parameters. For the dif-

fusion of high-energy particles in the directions parallel and perpen-

dicular to the ambient mean magnetic field, these are the second-

order quasi-linear theory (Shalchi, 2005; Tautz et al., 2008) and the

unified non-linear theory (Shalchi, 2010; Shalchi et al., 2011), respec-

tively. For the first, QLT is treated as a perturbation approach, which

has been evaluated to the second order. For the second, the diffusion

coefficients are derived based on the correlation function of the ve-

locity components, which has been evaluated using the solution of

the Fokker–Planck equation as the weighting function.

However, both theories could, so far, only be applied to magneto-

static turbulence and are presumably difficult to generalize for more

realistic turbulence models. Therefore, heuristic approaches remain

in use, including scaling laws (Reinecke et al., 1993) and simplified

expressions for the ratio of perpendicular and parallel diffusion (see

(Shalchi, 2015) and references therein).

2.2. Test-particle simulations

Analytical theories require rather strict assumptions as to the un-

derlying electromagnetic turbulence (such as magnetostatic fields

only; a homogeneous mean magnetic field; simplified turbulence

models). It is therefore essential to test the validity of these calcula-

tions calculations by comparison with observations and/or numerical

results. The latter has the advantage that the same assumptions and

simplifications as in the analytical derivations can be employed. Ob-

servations, on the other hand, are the ultimate test for every theory

but often involve a variety of additional effects so that it is hard to

benchmark initial theoretical approaches.

For the numerical determination of diffusion coefficients, their di-

rect connection to the trajectories of randomly scattered test particles

is exploited. A diffusive particle motion can be expressed through the

mean-square displacement, which should then increase linearly with

time. Accordingly, from the second moment of the diffusion equation,

one has

κi = 1

2

d

dt
〈(�ri)

2〉 ≈ 〈(�ri)
2〉

2t
, (1)

where the mean-square displacement, 〈(�x)2〉, is obtained from av-

eraging over a sufficiently large number of particles with different

initial positions and velocity directions.

Numerical simulation tools such as Padian (Tautz, 2010) and

many previous or other codes (Giacalone and Jokipii, 1999; Dalla and

Browning, 2005; see also Tautz and Dosch, 2013) solve the equation

of motion—i. e., the Newton–Lorentz equation

d

dt
(γ v) = q

m

[
δE(x, t) + 1

c
v × (B0 + δB(x, t))

]
, (2)

where v and x are the particle’s velocity and position, respectively.

Other parameters are: m the particle mass, c the speed of light, q the

electric charge and γ = (1 + v2/c2)−1/2 the relativistic Lorentz factor.

In what follows, a normalized time variable will be introduced as τ =
�t, where � = qB/(mc) is the gyro frequency.

In addition to a homogeneous background field B0, a turbulent

magnetic field δB is assumed and, in the case of dynamical plasma-

wave turbulence, also an electric field δE. For each of the typically

103–106 particles, this is a system of six coupled ordinary differen-

tial equations. The required accuracy for the solution is very high,

because it directly translates to energy conservation of the particles,

which has to be maintained over 103–107 gyration periods. For that

reason, methods with adaptive integration step sizes are being used.

The turbulent magnetic fields, δB, are obtained by superposing

typically 102 to 104 Fourier modes with random orientations and di-

rections of propagation (cf. Tautz and Dosch, 2013) according to

δB(r, t) =
N∑

n=1

ê
′
⊥
√

G(kn)�kn

× cos (knz′ − ω(kn)t + βn) (3)

where G(k) = |�0k|q
/

[1 + (�0k)](s+q)/2 is the turbulence power spec-

trum with q and s the spectral indices for the energy and inertial
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