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h i g h l i g h t s

• Matching two RN de-Sitter solutions across the singular surface.
• Radial equation of motion of shell is deduced.
• The spherical N-shell model is proposed.
• This equation reduced to FRW universe with � �= 0.
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a b s t r a c t

Using the Darmois–Israel formalism technique, charged thin shell in the presence of a cosmological constant

is constructed. An equation governing the behavior of the radial pressure across the junction surface is de-

duced. The cosmological constant term and the charge term slows down the collapse of matter.

The spherical N-shell model with an appropriate initial condition imitates quite well the FRW universe

with � �= 0.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The possible existence of a cosmological constant is one of the

most important challenges in high energy physics today, (Weinberg

1996). However, a surprising recent result coming from the analy-

sis of high redshift supernovae, indicating that the universe may be

accelerating now, (Cohn 1998). In fact this suggests that there is a

cosmological constant which dominates the content of energy of the

universe today. The gravitational collapse is one example of these ex-

treme physical conditions where black holes seem to be formed.

The general relativistic treatment of an infinitely thin shell has

been given by Israel (1966). The motion of a shell is described as a

timelike hypersurface between two different given space- times. This

metric junction method was generalized to include a non-vacuum

metric. The compact stellar objects such as white dwarf and neu-

tron star are formed by a period of gravitational collapse. It is inter-

esting to consider the appropriate geometry of interior and exterior
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regions and determine proper junction conditions which allow the

matching of these regions. Most of the problems related to gravita-

tional collapse have been discussed by considering spherically sym-

metric system. The gravitational collapse of dust was first shown by

Oppenheimer and Snyder (1939), the evolution of bubbles and do-

main walls in cosmological settings, Berezin et al. (1987), and shells

around black hole solutions, Brady et al. (1991).

An interesting application to the motion of dust shell with a cos-

mological constant was done in Yamanaka et al. (1992) and Lake

(2000). The effect of a positive cosmological constant on spherically

symmetric collapse with perfect fluid has been studied by Cissoko

et al. (1998). The motion of charged shell has been studied by Kuchar

(1968).

The goal of this work is to extend the study of the gravitational

collapse in the presence of a charge and a cosmological constant. This

paper is organized as follows. In Section 2 the Darmois–Israel thin

shell formalism is briefly reviewed. Match an interior RN- de-Sitter

solution to an exterior RN- de-Sitter solution and the equations of

motion of thin shell and the general form of these equations in N-

shell are deduced in Section 3. Finally, some concluding remarks are

made in Section 4. Also adopt the units such that c = G = 1.
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2. The Darmois–Israel formalism

Consider two distinct spacetime manifolds M+ and M− with met-

rics given by g+
μν(x

μ
+) andSi jK̄i j = [−Tμνnμnν − �

8π ]+−, in terms of

independently defined coordinate systems x
μ
± . The manifolds are

bounded by hypersurfaces �+ and �−, respectively, with induced

metrics g±
i j

. The hypersurfaces are isometric, i.e. g+
i j
(ξ) = g−

i j
(ξ) =

gi j(ξ), in terms of the intrinsic coordinates, invariant under the isom-

etry. A single manifold M is obtained by gluing together M+ and M−
at their boundaries, i.e. M = M+ ∪ M−, with the natural identification

of the boundaries � = �+ = �−. The second fundamental forms (ex-

trinsic curvature) associated with the two sides of the shell are:

K±
i j

= −n±
γ

(
∂2xγ

∂ξ i∂ξ j
+ 	

γ
αβ

∂xα

∂ξ i

∂xβ

∂ξ j

)
...� (1)

where n±
γ are the unit normal 4-vector to � in M, with nμnμ = 1 and

nμe
μ
i

= 0. The Israel formalism requires that the normal point from

M− to M+. For the case of a thin shell Ki j is not continuous across �,

so that, the discontinuity in the second fundamental form is defined

as [Ki j] = K+
i j

− K−
i j

. The Einstein equations determines the relations

between, the extrinsic curvature and the three dimensional intrinsic

energy momentum tensor, are given by the Lanczos equations:

Si j = −1

8π
([Ki j] − [K]gi j) (2)

where [K] is the trace of [Ki j] and Si j is the surface stress-energy ten-

sor on �.

The first contracted Gauss- Kodazzi equation or the “Hamiltonian”

constraint,

Gμνnμnν = 1

2
(K2 − Ki jK

i j − 3R), (3)

with the Einstein equations provide the evolution identity

Si jK̄i j =
[
−Tμνnμnν − �

8π

]+

−
. (4)

The convention, [X] = X+ − X−, and X̄ = 1
2 (X+ + X−), is used.

The second contracted Gauss- Kodazzi equation or the “ADM”

constraint,

Gμνe
μ
i

nν = K j
i; j

− K,i (5)

with the Lanczos equations gives the conservation identity

Si
j;i = [Tμνe

μ
i

nν ]+
−. (6)

The surface stress-energy tensor may be written in terms of the

surface energy density σ , and surface pressure p as: Si
j
= diag · ( −

σ, p, p). For spherically symmetric thin shell, the Lanczos equations

reduce to

σ = −1

4π
[Kθ

θ ] (7)

p = 1

8π
([Kτ

τ ] + [Kθ
θ ]). (8)

If the surface stress-energy terms are zero, the junction is denoted

as a boundary surface. If surface stress terms are present, the junction

is called a thin shell.

3. Generic dynamic of charged thin shell

The matching of two Reissner Nordstrom de-Sitter space-times of

M±, given by the following line elements:

ds2
± = − f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin

2θdϕ2) (9)

with

f± = 1 − 2m±
r

+ q2
±

r2
− 1

3
�±r2 (10)

where m±, q± and �± are the gravitational mass, the charge and the

cosmological constant outside and inside the shell. The suffix ‘+’ de-

notes a quantity evaluated just outside the shell and ‘-‘ just inside the

shell. Let the equation of the shell be r± = R±(τ ), the history of the

shell is described by the hypersurface xα± = xα±(τ, θ , ϕ), in the regions

M±, respectively; the function R(τ ) describes the time evolution of

the shell. Using the Einstein field equation in an orthogonal reference

frame, the stress-energy tensor components are given by

ρ(R) = −1

8π

[
− 1

R2
+ f±

R2
+ f ′±

R

]
(11)

Pr(R) = 1

8π

[
1

R2
− f±

R2
− f ′±

R

]
(12)

Pt(R) = 1

8π

[
− f ′′±

2
− f ′±

R

]
(13)

where ρ(R) is the energy density, Pr(R) is the radial pressure, and

Pt(R) is the lateral pressure measured in the orthogonal direction to

the radial direction; the prime denotes a derivative with respect to R.

The non-trivial components of the extrinsic curvature are given by:

Kθ±
θ

= K
ϕ±
ϕ = 1

R

√
f± + Ṙ2 (14)

Kτ±
τ = 1√

f± + Ṙ2

(
m±
R2

− q2
±

R3
− 1

3
�±R + R̈

)
(15)

Therefore, the Lanczos equations are given by:

σ = −1

4πR
[
√

f± + Ṙ2] (16)

p = 1

8πR

[
1 − m±

R
− 2

3
�±R2 + Ṙ2 + RR̈√
f± + Ṙ2

]
(17)

Taking into account the transparency condition, [GμνUμnν ] = 0,

the conservation identity, Eq. (6), provides the following simple rela-

tionship:

d

dτ
σA + P

d

dτ
A = 0 (18)

where A = 4πR2 is the area of the spheres of symmetry at constant

R. In general case, the conservation identity provides the following

relationship:

σ ′ = −2

R
(σ + P) + K (19)

where K is the momentum flux given by

K ≡ σ

R
= 1

4πR2
[
√

f± + Ṙ2] (20)

This flux term vanishes in the particular case when P = −ρ . Taking

into account these relationship

σ + p = 1

8πR
√

f± + Ṙ2

[
−1 + 3m±

R
− 2q2

±
R2

− Ṙ2 + RR̈

]
, (21)

σ̇ = −Ṙ

4πR2
√

f± + Ṙ2

[
−1 + 3m±

R
− Ṙ2 − 2q2

±
R2

+ RR̈

]
, (22)

σ ′ = 1

4πR2
√

f± + Ṙ2

[
1 − 3m±

R
+ 2q2

±
R2

+ Ṙ2 − RR̈

]
. (23)

For the static solutionR
0
, with Ṙ = R̈ = 0, Eq. (23), reduced to

σ ′(R0) = 1

4πR0
2
√

f±(R0)

[
1 − 3m±

R0

+ 2q2
±

R2

]
. (24)
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