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h i g h l i g h t s

� This paper presents phase space aspects of nonlinear wave propagation in astrophysical gases.
� The existence of secondary critical points in thermally conducting gases is established under some very general conditions.
� The role of secondary critical points in structure formation in the ISM is discussed.
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a b s t r a c t

The interstellar medium (ISM) is a thermally conducting gaseous medium consisting of neutral ions, and in
some cases free electrons. Considering the ISM as a continuous medium, phase space analysis is applied
here to investigate the nonlinear problem of heating and cooling wave front evolution in thermally
conducting homogeneous interstellar gases. With an arbitrary net heating function a general criterion
for determining the critical points is established which shows that for a given value of the thermal conduc-
tivity exponent a, secondary critical points emerge as a necessary feature of the gaseous medium. For a
thermally conducting electron gas and for a neutral ion gas, we explicitly state the conditions for the
occurrence of the secondary critical points. These critical points can either be unstable nodes, saddle
points or degenerate nodes. The existence of secondary critical points is of significance in the formation
of globule-like stable structures in the ISM, and in cloud formation phenomena in the interstellar gases.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Formation and evolution of heating and cooling wave fronts in
thermally conducting ISM is a major process for energy transfer
in the medium. Such a process also occurs in other astrophysical
systems as well, including solar corona heating, and galactic clus-
ters formation (Shore, 2007). In such cases temperature perturba-
tions generally result in causing thermal instability in the
medium. This requirement is called the Field criterion (Parker,
1953; Field, 1965; see Appendix A), which allows only highly sub-
sonic wave motion in a thermally stable medium. It follows that
stable structures in the ISM cannot form unless pressure variations
are negligible in the process of compressive waves formation in the
gas. The resulting dynamics of the heating and cooling wave fronts
is thus a highly nonlinear phenomenon. It has been subject to dif-
ferent numerical and analytical approaches (Balbus and Stoker,

1989; Meerson, 1996; Ibanez and Bessega, 2000). Numerical and
linearization procedures have been useful in giving an analysis of
how the wave fronts evolve in the gas (Ferrara and Shchekinov,
1993, Iwasaki and Inutsuka, 2012); and there have been indica-
tions that, for specific heating functions, there are steady fronts
formed inside the medium (Elphick et al., 1991, 1992).

In this paper, we apply global phase space methods to explore
typically nonlinear aspects of the problem. We find that the auton-
omous nature of the governing equations leads to a direct transfor-
mation into the phase space variables. This enables us to discuss
the evolution of the heating and cooling fronts for an arbitrary
given net heating function. Thus we arrive at some very general
results regarding the dynamics of the compressive wave fronts in
thermally conducting gases. In particular the analysis shows the
existence of secondary critical points, that play an important role
in the heating and cooling of thermally conducting gases. We
establish here the conditions under which the secondary critical
points may form in the gas, thus give a general criterion for heating
functions where the secondary critical points may act as unstable
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nodes. In this analysis the heating/cooling function is not specified
a priori, thus we make no assumption as to the form of the heating/
cooling function used. This enables us to discuss the existence of
critical points in a general thermally conducting gas.

In Section 2, we first give a full derivation of the governing
equations, based on the mass, momentum, and energy
conservation laws. Then coupled to the ideal gas equation we
establish the Field criterion for thermal instability. We deduce that
for the highly subsonic perturbations the governing equations
reduce to a nonlinear equation, discussed here in one dimension.
The results obtained here, however, apply to the higher dimensions
as well. In Section 3, we use the phase space analysis for the
problem for a general choice of the net heating function, and
establish the existence of secondary critical points. Here we also
give the general conditions under which degenerate nodes and
saddle points are formed in an electron or ion gas. Lastly in
Section 4 we give a discussion of the main conclusions of the
study.

2. Formulation of the basic equations

We consider an initially uniformly distributed gas. Then under
the continuous approximation, the basic equations are (Shore,
2007) the mass conservation equation,
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the momentum conservation equation,
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and the thermal energy conservation equation,
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Here Qðq; TÞ is the net heat gain per unit volume per unit time. For
cooling rate Q� and heating rate Qþ, we have Q ¼ Qþ � Q�. Also
here k is a measure of thermal conductivity, and is given by the
ratio of the of specific heats c ¼ cP=cV . In astrophysical gases heat
gain is a function of temperature, for a fixed volume and mass of
the gas.

2.1. Temperature equation for heating and cooling fronts

The compressive waves in the gaseous medium form heating
and cooling fronts in the gas. We consider the motion of such
hot or cold fronts in one spatial dimension. According to Field
criterion (see Appendix A for a derivation), any motion of such
interfaces must be highly subsonic. This means that we can neglect
the velocity term in the momentum equation, hence obtain from
Eq. (2) in one dimension:
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Equivalently P is constant. It is now convenient to change to
Lagrange variable gðx; tÞ defined by:

gðx; tÞ ¼
Z x
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From the mass conservation equation (1) it then follows that
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u being the velocity in x-direction. This implies that
@=@xjt ¼ q@=@gjt and @=@tjx ¼ @=@tjg � qu@=@gjt , thus the Lagrange
derivative D=Dt can be expressed as:
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Using these definitions the energy equation (3) in one dimension,
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Since in the subsonic case P ¼ const., and the equation of state is
P ¼ R=lð ÞqT , it follows that q / 1=T. Thus both k and Q are
functions of temperature only. We re-scale the time variable as
s ¼ ðc� 1ÞP=c R=lð Þ2

� �
t, and write

LðTÞ ¼ R=l
P
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T
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Eq. (9) then gives the governing equation for the evolution of the
temperature front:
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Since for a gas consisting of thermal electrons the approximate form
of conductivity function is kðTÞ / T5=2 and for neutral ions
kðTÞ / T1=2, we take the conductivity function proportional to Ta,
where a can take value 5=2 and 1=2. For steadily moving wave front
in g space, with velocity U, we set n ¼ g� Ut. Also defining Ta ¼ X,
Eq. (11) becomes (Elphick et al., 1991):

Xb d2X
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þ FðXÞ ¼ 0; ð12Þ

where FðXÞ ¼ aTabLðTÞ, and b ¼ ða� 1Þ=a which can take value 3=5
for thermal a electron gas, and �1 for neutral ion gases. For the sake
of generality we do not fix LðTÞ, hence the net heating/cooling func-
tion FðXÞ; later this will enable us to precisely indicate the second-
ary critical points in a gas with a given form of the heating/cooling
function, such as that used by Iwasaki and Inutsuka (2012).

3. Stability analysis and the existence of secondary critical
points

Critical points are of particular interest for first order
autonomous systems of the type

dy
dt
¼ Pðx; yÞ; dx

dt
¼ Qðx; yÞ: ð13Þ

These are points of stability for the system, independent of the
initial conditions, toward or from which solutions tend in the
asymptotic limit t ! �1. Such solutions may exhibit periodicity,
and may be limit cycles also.

The temperature equation (12) is an autonomous equation for a
given net heating function. It is equivalent to the first order system

dX
dn
¼ Y ; ð14Þ

dY
dn
¼ �X�bðUY þ FðXÞÞ: ð15Þ

For a system of type (13), a point ðx0; y0Þ in the phase space is called
a critical point if Pðx0; y0Þ ¼ 0 ¼ Qðx0; y0Þ.

The system (14) and (15) possesses critical points at
ðX;YÞ ¼ ð0;0Þ and at ðX;YÞ ¼ ðX0;0Þ where X0 is the zero of the
net heating function FðX0Þ ¼ 0. We first analyze the behavior of
the solution close to the critical points, since periodic solutions
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