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HIGHLIGHTS

« Simple, approximate analytical forms are provided for polytropes.

« Moment of inertia is shown to be a simple function of polytropic index.

« A composite polytrope is constructed for application to exoplanets.
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Polytropes are widely applied in astrophysics. To facilitate their use, we derive analytical formulae for the
moment of inertia as a function of polytropic index. We also provide 1- and 3-parameter equations that
replicate the density variations in polytropic bodies to varying degrees of accuracy, determined by
numerical calculations and analytical results for polytropic indices between 0 and 5. As an example,

we construct a composite polytrope, suitable for gas giants, exoplanets, or tiny sub-solar dwarfs, wherein
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an inner sphere is modeled by constant density, which represents the density jump associated with pro-

duction of a relatively incompressible solid, and an outer envelope is modeled as having a polytropic
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inertia.

index near 2.5, which corresponds to a diatomic gas. Envelope sizes are constrained by the moment of

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Polytropes are the underpinning of our theoretical understand-
ing of stellar structure and evolution (after Chandrasekhar, 1939)
and find wide use in other areas of astrophysics (summarized by
Horedt, 2004). For example, polytropic equations have been used
to describe mass and position of planets and moons in solar and
satellite systems, respectively (e.g. Geroyannis and Dallas, 1994),
and to investigate globular clusters (e.g. Nguyen and Pedraza,
2013), collapsing molecular clouds and Bok globules (Curry and
McKee, 2000), quark stars (Lai and Xu, 2009), and the effect of pres-
sure anisotropy on compact objects (Herrara and Baretto, 2013).
Furthermore, polytropes have been applied to problems of stability
and oscillation (e.g., Gleiser and Sowinski, 2013; Breysse et al.,
2014) as well as to address relativistic effects (e.g., Geroyannis
and Karageorgopoulos, 2014). However, use of polytropes can be
cumbersome because representations are typically numerical,
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whereas analytical expressions are desired for many applications
(e.g., Nguyen and Lingam, 2013).

The polytropic construct is based on the hydrostatic equation,
which relates pressure to gravitation, and on Poisson’s equation
which describes gravitational attraction. In the absence of rotation,
which we neglect here, symmetry is spherical. To specify all three
variables (¢ = gravitational potential; p =density; and P = pres-
sure) as a function of radius (r), a relationship between pressure
and density is assumed:

P=kp’ (M

where x and 7y are constants (e.g., Emden, 1907; Eddington, 1959).
Eq. (1) has the same form as the equation for a perfect gas under
adiabatic conditions:

P Cp/Cy T Cp/R
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where Cp and Cy are the heat capacities under constant pressure

(isobaric) and constant volume, V, (isochoric) conditions,
respectively. Also, T is temperature and R is the gas constant. Hence,
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y is referred to as the adiabatic index. Knowing density constrains
pressure via Eq. (2) and for potential:

ON:
y-1p
Changes of variables make the problem tractable: using the
polytropic index n=1/(y — 1) and non-dimensionalizing the vari-
ables provides the Lane-Emden equations which can be solved
analytically for n=0, 1, or 5. Numerical solutions are tabulated
for many other cases (e.g., Emden, 1907). The case of n =0 corre-
sponds to constant density and n =5 to a density distribution that
extends to infinity, although the mass is finite. These two cases set
bounds for depicting stars and planets. Different indices are
applied to the various star types: e.g., white dwarfs are modeled
by high n, whereas those with convective cores are modeled with
low n, and neutron stars with very low n (e.g., Ferrari et al,
2010). An important case is n=2.5 which corresponds to a dia-
tomic gas (e.g. H; e.g., Maron and Prutton, 1970) under adiabatic
conditions. Similarly, under adiabatic conditions a monatomic
gas (e.g. He) or a triatomic gas (e.g. CO,) respectively correspond
to the polytropes with n=1.5 and n=3.5.

Early work on the gas giant planets found that a polytropic
index of n ~ 1 fit various properties (e.g., Bobrov et al., 1978). How-
ever, the outermost region of Jupiter is largely hydrogen gas and
thus should instead be described by n = 2.5. In recognition of such
disparities, more complicated approaches have been pursued to
model planets (e.g., Horedt and Hubbard, 1983) and, more recently,
exoplanets. For example, modifications of the polytrope of the form
p=po+aP’ (where a and b are fitting parameters) have been
applied to solid exoplanets with masses up to 40 times that of
Earth (Seager et al. 2007). However, it is presently difficult to con-
strain polytropes of exoplanets because mass and radius are their
only known physical parameters (e.g., Baraffe et al., 2010; Swift
et al.,, 2012). Recently, advances have been made in determining
the parameter J, from transiting exoplanets (Carter and Winn,
2010; Leconte et al.,, 2011). The parameter J, is related to the
moment of inertia (I), which reflects the interior compression
and structure because [ is strongly affected by concentration of
mass near the center.

In anticipation of further advances in measuring the physical
properties of exoplanets, and to provide analytical forms for poly-
tropes that can be used in other astrophysical applications, the
present paper explores two-layer (composite) polytropic models
and the connection with the moment of inertia. The example
considered is exoplanets. This exercise is appropriate for several
reasons. (1) Compositions of exoplanets are unknown, yet deter-
mine the equation-of-state. (2) Uncertainties exist even in models
of interiors of the gas giants, for which considerably more informa-
tion is available (see e.g., Gaulme et al., 2011), This situation
persists because the data on metallic hydrogen, which is
considered to be an important interior phase, is limited to one high
pressure-high temperature point from transient, shock experi-
ments (Nellis, 2013). Although predictions starting with Wigner
and Huntington (1935) and continuing to the present suggest
stability of metallic hydrogen at ambient temperature and very
high pressure, diamond anvil experiments (e.g. Eremets and
Trojan, 2011) have not provided convincing evidence of this
transition (Nellis, 2013). Equation-of-state models are therefore
not fully consistent with experiments. (3) For the hot Jupiter type
of exoplanet, a significant part of the outer layers should be gas,
which is amenable to polytropic equations of state.

We begin with a general formula for moment of inertia as a
function of n and with simple and useful representations for the
density of polytropes. Earlier approximations for polytropes
involved polynomials but accuracy in such approaches requires a

(3)

large number of terms (>25: e.g., Hunter, 2001; Saad, 2004). Rea-
sonable approximations of various polytropes with indices from
0 to 500 have been made with 4 parameters (Liu, 1996). We show
here that equations for density can be represented reasonably well
by 1 or 3 parameters, which will simplify use of polytropes (see
Horedt, 2004 for a summary of the diverse applications).

We construct a composite polytrope where the inner spherical
region is assumed to have a constant density that is higher than
p of the outer spherical shell. This approach represents gassy
exoplanets, which have a large solid interior that is incompressible
in comparison to the gaseous, outer envelope, and significantly
denser, due to this phase transition being pressure-induced. The
presence of additional interior structure such as an innermost
rock + metal core (see figures in Lodders and Fegley, 1998) is
neglected here, as its effect will be small, as gauged by Jupiter
whose core is only ~3% of the planet’s mass (e.g., Saumon and
Guillot, 2004). Composite polytropes have been applied to stars
(e.g., Bejger, 2005) but these differ considerably from our construct
because continuously changing density was assumed, whereas in a
planet or perhaps in the coldest, smallest stars, the density should
be discontinuous at the transition between molecular and metallic
species. Other composite models for stars (e.g., Rucinski, 1988,
which is based on the model of Rappaport et al., 1983; see also
the summary by Curry and McKee, 2000) assume in addition to
continuity in density that the inner region is more compressible
than the outer, which is not the case for a planet wherein transi-
tions are pressure driven: instead n of the gassy envelope should
be lower than n of the solid sphere). Various equations-of-state
approaches have been used to represent planetary interiors (see
e.g., Horedt, 2004). We show that moment of inertia of Jupiter
can be reproduced by the combination of an incompressible central
sphere (i.e. n = 0) with an outer molecular mantle with polytropic
index near 2.5, which approximates behavior of a perfect diatomic
gas, and suggests a simple, generic polytrope for investigation of
gassy exoplanets.

2. Calculations
2.1. Moments of inertia for polytropes

Tables of density as a function of reduced radius for different
polytropes were downloaded from the web using the polytrope
calculator hosted by Clemson University (Brown et al., 2006).
Moments of inertia (I) are calculated on the basis of spherical shells
using:

I:%/O. 4mrtp(r)dr 4)

where a is the surface radius. Simple solutions exist where density
(p) can be obtained analytically: The reduced (normalized) moment
of inertia [Inorm = I/(Ma?)], is well known for n = 0, equaling 2/5. We
obtain Inorm = 2(IT2 — 6)/(3n2) for n=1, and Iyorm =0 for n=5 by
taking the limit of a approaching infinity. These three simple solu-
tions (Fig. 1) are fit by
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For comparison, we numerically integrated Eq. (4) for these
three cases and many other values of n between 0.5 and 4.99. As
shown in Fig. 1, the numerical results differ only slightly from
the analytical results for n=0, 1 and 5, presumably due to finite
spacing in the tabular output and the approximations used in the
numerical recipe. Similarly, the numerical results for other values
of n differ only slightly from Eq. (5).
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