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h i g h l i g h t s

� Fluctuation in viscosity parameter as a nonlinear perturbation.
� Reduction of nonlinear perturbation equations to a dynamical system.
� Identification of growing modes of viscosity fluctuation with saturation and final degradation.
� Analysis of the viscosity fluctuation mechanism in physically acceptable range of mean-flow parameters.
� Identification of the growing phase of viscosity fluctuation as a power law in time.
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a b s t r a c t

We propose a mechanism to produce fluctuations in the viscosity parameter (a) in differentially rotating
discs. We carried out a nonlinear analysis of a general accretion flow, where any perturbation on the
background a was treated as a passive/slave variable in the sense of dynamical system theory. We dem-
onstrate a complete physical picture of growth, saturation and final degradation of the perturbation as a
result of the nonlinear nature of coupled system of equations. The strong dependence of this fluctuation
on the radial location in the accretion disc and the base angular momentum distribution is demonstrated.
The growth of fluctuations is shown to have a time scale comparable to the radial drift time and hence the
physical significance is discussed. The fluctuation is found to be a power law in time in the growing phase
and we briefly discuss its statistical significance.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The presence of accretion discs around compact objects like the
neutron star and the black hole in both galactic and extragalactic
X-ray sources is now a well established phenomenon. Some radio
objects such as active galactic nuclei have accretion discs around
supermassive black holes. Apart from several details such as
environment, size, strength of magnetic field and cooling mecha-
nism, all the global models of accretion systems share a common
hydrodynamic structure. The central idea being, the turbulent
shear stress causes dissipation of angular momentum and energy
of the rotating fluid particles such that accretion can take place.
The origin of turbulence and hence turbulent viscosity was an issue
for the founders of the field of ‘accretion powered astrophysical
systems’ and still remains to be a major issue. The closure model

proposed by Shakura and Sunyaev (1973) remains the only work-
ing model for turbulent shear stress in astrophysical accretion
discs. In this model, the physics behind the turbulent shear stress
is parameterised by a dimensionless number a. Thus the a viscosity
continues to be the central idea in any model for hydrodynamic
transport in accretion systems.

The spirit of the a viscosity is as follows: any eddy velocity
which is greater than the local sound speed will dissipate quickly
and cannot be the cause of eddy viscosity. Hence the turbulent
stress must be less than the local isotropic pressure. Thus the
shearing stress is taken to be proportional to the local isotropic
pressure where the proportionality factor is called a, where
0 < a < 1. When a � 1 the flow is called a high viscosity flow,
whereas when aK 10�2, the flow is called a low viscosity flow.
With this model, the spectrum of cool Keplerian discs could be
explained (Pringle and Rees, 1972; Novikov and Thorne, 1973;
Shakura and Sunyaev, 1973). The idea of a sub-Keplerian disc
was proposed to explain the nonthermal tail of the spectra from
X-ray sources (Liang and Thompson, 1980; Paczyńsky and
Bisnovatyi-Kogan, 1981; Muchotrzeb and Paczyńsky, 1982). In
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the case of a sub-Keplerian accretion disc the turbulent energy dis-
sipated locally, is partly advected radially and partly emitted as
radiation via nonthermal processes. In this model also, a closure
remained unchanged although additional ram pressure was added
to the total pressure (Chakrabarti and Titarchuk, 1995; Mandal and
Chakrabarti, 2005; Rajesh and Mukhopadhyay, 2010). Since a is the
ratio of two flow variables, namely, the turbulent shear stress and
isotropic pressure, a should also be considered as a flow (contin-
uum) variable. Since there is no known equation for the evolution
of a, it is treated as a disc parameter, and its value is fixed globally.

Apart from the fundamental problem to explain the origin of tur-
bulent viscosity, there are other phenomena which await complete
understanding, such as rapid X-ray variabilities in black hole
accretion discs, aperiodic X-ray fluctuations and quasi periodic
oscillations (QPOs) in accretions discs. Global mode oscillations
and waves are invoked to explain some of these phenomena
(Mukhopadhyay, 2009). As the a viscosity is the source of energy
dissipation in accretion discs, it is logical to attribute some of the
time variabilities of the spectra to the temporal variation of a. For
example, in order to explain the 1=f (flicker) noise in X-ray sources,
Lyubaraskii (1997) considered the local temporal fluctuations of a at
outer radii. This would cause a change in mass accretion rate at inner
radii where most of the X-rays are emitted. In order to have such an
effect, a time varying component of a was assumed. The fluctuation
was assumed to grow enough in a local accretion time scale. Thus the
fluctuations in a resulted in a variable mass accretion rate, which
would lead to variations in X-ray luminosity. Although the ultimate
aim of our work in the present paper is similar to that of Lyubaraskii
(1997), i.e., to study a mechanism to produce variabilities in the ob-
served luminosities (say, X-ray) from accretion discs, our approach
is somewhat different, and may be stated as follows: considering a
steady state accretion in an annular region of an accretion disc with
self-similar base flow profiles, we wish to study how the background
a changes in response to any perturbation on the radial velocity
field? Such perturbations of the radial velocity field (i.e., the mass
accretion rate) may, in general, be of internal or external origin.
These kind of studies have direct implications on the observed vari-
abilities in X-ray luminosities from accretions discs.

A stable accretion system tries to maintain the steady mass flow
across all radii. Any cause, internal or external which disturbs this
steady state, will be quickly nullified by viscous dissipation. In
Section 2.1 we model the steady state flow variables in a local
annular region as a power law in radial coordinate. The global flow
domain can be thought of as a collection of such annular regions. In
Section 2.2 the evolution equations for perturbations in the mean
density and the radial velocity, causing perturbation in a are dis-
cussed. We use the standard a model for viscous stress. In Section
2.3 we reduce the perturbation equations to a set of nonlinear
dynamical systems of equations, by specialising to the case when
the Lagrangian derivatives (defined with respect to the radial
velocity field) of the perturbations in the flow variables vanish.
In Section 3 we demonstrate that the growth of the viscosity
parameter is always followed by saturation and degradation, and
the fluctuation asymptotically goes to zero. The behaviour of the
fluctuation is strongly dependent on the radial location, base angu-
lar momentum distribution and the mean viscosity of the flow. We
demonstrate that the growth of the fluctuation in viscosity param-
eter always scales as the local accretion time, and that it shows a
power law growth phase in time, in the astrophysically relevant
time scale. We conclude in Section 4.

2. Model equation describing the system and the solution
procedure

Let us consider a cylindrical coordinate system, with spacetime
coordinates denoted by ðr;/; z; tÞ, whose origin is at the centre of

the compact object. The angular velocity vector, X, is pointed along
z (vertical) direction, and the midplane of the accretion disc is at
z ¼ 0. We begin by considering a vertically integrated, axisymmet-
ric, steady-state accretion flow, in which, we focus on an annular
region of the accretion disc. We consider axisymmetric perturba-
tions on base radial velocity field and mean density in this annular
region to study the response of such perturbations on the evolution
of the viscosity parameter. Thus all the base flow variables in this
study are functions only of the radial coordinate (r), whereas the
perturbations depend on both, the radial coordinate (r) and time (t).

2.1. Base flow

For a general accretion flow, we consider a small annular region
specified by the mean velocity field, where V and X are the magni-
tudes of the radial and angular velocity fields, respectively. Let us
specify the unperturbed axisymmetric, steady-state accretion
(base) flow where the radial velocity and the angular velocity are
power laws in radial coordinate, i.e., V ¼ V0r�j and X ¼ X0r�q.
The explicit radial dependence of other fluid variables in an unper-
turbed state can be obtained by solving the conservation equations
for mass, radial momentum and angular momentum, given as:

1
r
@

@r
ðrRVÞ ¼ 0 ð1Þ

R V
@V
@r
� rX2

� �
¼ kR

r2 �
@P
@r

ð2Þ

RV
r2

@

@r
ðr2XÞ ¼ � 1

r3

@

@r
ðr3W/rÞ ð3Þ

where R and P are vertically integrated density and pressure,
respectively. The quantity k ¼ �GM, where G is the universal grav-
itational constant and M is the mass of the central object. We solve
the above set of equations along with the equation of state, P ¼ RT ,
where T is the effective temperature of the flow. We impose the
boundary condition that all the physical quantities go to zero as
r !1. For the turbulent stress, we use the a viscosity model, i.e.,
W/r ¼ aP=r, where a is the Shakura–Sunyaev viscosity parameter.
We can write the solution to the above set of equations as,

VðrÞ ¼ V0r�j; XðrÞ ¼ X0r�q; RðrÞ ¼ R0rj�1 ð4Þ
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where V0 < 0, as the radial flow is directed towards the central
object, and R0 ¼ _M=ð4pV0Þ, where _M is a negative quantity called
the mass accretion rate. Since both, the radial velocity and density,
decrease with increasing values of r, we get from Eq. (4) that
0 < j < 1. The value of q indicates the angular momentum distribu-
tion of the base flow; q ¼ 1; q ¼ 3=2 and q ¼ 2 describe, respec-
tively, the flat rotation, Keplerian rotation and constant angular
momentum disc profiles. From the angular momentum balance
equation, we get

aðrÞTðrÞ ¼ �V0X0r1�q�j þ c
R0

r�j�1 ð6Þ

As aT is a physical quantity, it approaches zero as r !1, according
to the boundary condition that we have chosen. In Eq. (6), since the
term containing the integration constant c goes to zero as r !1; c
is nonzero in general. The physics behind c comes from the actual
physical mechanism which produces the a viscosity. The origin of
a is beyond the scope of the present analysis, therefore, we can only
choose a at a particular radius which automatically fixes the value
of c from Eq. (6).
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