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h i g h l i g h t s

�We derived a numerical method for the computation of two-satellite relative motion.
� We derived a set of analytical solutions for the two-body variational equations.
� The numerical method and the analytical solution coincide.
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a b s t r a c t

We present an accurate simple-to-implement numerical method for the computation of the relative
motion of two-satellites. This is presented for both the linearized approximation and in an exact
formulation. We also derive a basic set of analytical solutions for the variational equations of the
two-body motion. This is shown to be a useful approximation for the relative motion of two-satellites
even in the so called J2 problem, provided one uses the secular J2-theory to obtain the orbit precession.
The numerical method results are compared with approximations produced by the two-body variational
but precessed approximation. We find a good agreement for quasi-circular orbits with same inclination.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider formation flight of satellites in proximity, in fact so
close to each other that the linearized approximation gives reason-
able results. Clohessy and Wiltshire (1960) solved this problem but
only in the case of circular Keplerian orbit. A possibility to obtain
the first order relative motion is to differentiate the formulae for
the Kepler motion. One example of the formulation of such an algo-
rithm can be found in Mikkola and Innanen (1999) and also
Mikkola et al. (2000), Mikkola et al. (2002). There are many publi-
cations discussing formation flight (Alfriend et al., 2001; Roscoe
et al., 2013; Schaub and Alfriend, 2001), which handle the problem
in terms of orbital elements and their perturbations. More recently
Kristiansen et al. (2010) published a new formulation which is
valid for eccentric orbits also. We try to present the results in a
more elementary and easy to understand way and consider in
detail quasi-circular orbits. One new result in this paper is a
numerical method that is simple to implement and gives accurate
results for the orbits.

We consider two methods: In Section 3 we examine the two-
body orbit with precessions obtained by solving the secular
Hamiltonian in which the J2 term is included. The results show that
this method is useful to determine the relative trajectories of two
satellites at least for the mission planning phase, but the method
may suffer from phase errors especially if osculating elements
are used instead of the mean elements (Walter, 1967; Gupta
et al., 2011). For accurate computations we suggest (in Section 4)
a method that uses logarithmic Hamiltonian leapfrog. This has
the advantage of simplicity of programming and possibility of high
precision.

2. A simple set of independent solutions for the variational
problem of two-body motion

Let us consider the two-body problem in units in which G ¼ 1,
i.e. for the sake of simplicity we write the equations of motion in
the form

_r ¼ v; _v ¼ �mr=r3; ð1Þ

where v is the velocity, r is the position vector and r ¼ jrj is the dis-
tance. The variational equations take the form

_x ¼ w; _w ¼ �mðx=r3 � 3r � xr=r5Þ; ð2Þ
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where x is the variation of the position and w ¼ _x is the variation of
velocity. Since the solutions of these equations can be used to
approximate the relative motion of two satellites in almost the
same orbit (if they stay close to each other), it is worth to study
the various possibilities to formulate the solution of that equation.

It is obvious, and well known, that a partial derivative of two-
body motion with respect to any orbital element is a particular
solution of the variational equation (2). Let qk k ¼;1;2; . . . ;6 be a
set of orbital elements i.e.

q ¼ ðM0; i;X;x; a; eÞ;

which are the mean anomaly M at epoch, inclination, ascending
node, argument of pericenter, semi-major-axis and eccentricity,
respectively. The independent solutions for the variational equation
(2) are thus

xk ¼
@r
@qk

and wk ¼
@v
@qk

: ð3Þ

This makes it possible to obtain relatively easily all the indepen-
dent solution. However, the results would look quite complicated.
We proceed as follows: infinitesimal shift along the orbit gives the
velocity as a solution, any infinitesimal rotation gives the cross
product of a constant vector and the position vector, change of
the semi-major axis gives change of the length of the position
vector as well as change of mean motion resulting to combination
of position vector and time times velocity. The cross product of a
constant vector and the position vector can be written as a linear
combination of the cross products of the unit vectors i; j;k and
the position r. Thus we have the individual solutions i� r, j� r
and k� r. Finally the most complicated part is due to the effect
of changing the eccentricity, but even this can be reduced to a
rather simple form. Here we give the list of the results (note that
the xk and wk here are not exactly any partial derivatives but
constant factors have been excluded):

x1 ¼ v
x2 ¼ i� r
x3 ¼ j� r
x4 ¼ k� r
x5 ¼ 2r� 3tv
x6 ¼ mð2� ðpþ rÞ=aÞr� r � vðpþ rÞv;

8>>>>>>>><>>>>>>>>:
ð4Þ

where p ¼ ðr� vÞ2=m is the semi-latus-rectum, a is the semi-major
axis (1=a ¼ 2=r � v2=m) and i; j;k are the standard unit vectors. For
the derivatives wk ¼ _xk one gets

w1 ¼ �mr=r3

w2 ¼ i� v
w3 ¼ j� v
w4 ¼ k� v
w5 ¼ �v þ 3tr=r3

w6 ¼ ð2v2 �m=r � _r2Þ_rrþ ðm� rv2Þv;

8>>>>>>>><>>>>>>>>:
ð5Þ

where _r ¼ r � v=r is the radial derivative. The total expressions for x
and w can now be written simply as

x ¼
X6

k¼1

akxk; w ¼
X6

k¼1

akwk; ð6Þ

where the coefficients ak are the constants of motion to be
determined from initial conditions.

One notes that the expression are independent of orbit type,
i.e. valid for ellipse, parabola and hyperbola without any
reformulation.

The results obtained using only the two-body variational
equations are valid only for a limited time and can thus be used

just to get a first idea of how to arrange a formation flight. For more
accurate results it seems necessary to use numerical computations.
In the next section we consider one new method for numerical
integration of the difference of two nearby orbits.

3. Using secular J2 motion

The secular Hamiltonian of the J2 problem (Escobal, 1965;
Stiefel et al., 1971)

H ¼ �m=ð2aÞ þ J2
m
8

1þ 3 cosð2iÞ
a3ð1� e2Þ3=2 ; ð7Þ

when written in terms of the Keplerian elements (and the square of
Earth’s radius in included in the value of J2). The Lagrangian pertur-
bation equations give the well known secular effects of the J2 term
as

_X ¼ �3J2m cos ðiÞ
2a7=2ð1� e2Þ2

_x ¼ 3
J2m �1þ 5 cos2ðiÞ

� �
4a7=2ð1� e2Þ2

M�¼ 3J2mð�1þ 3 cos2ðiÞÞ
4a7=2ð1� e2Þ3=2 ; ð _M ¼ nþM�Þ;

ð8Þ

where n ¼ 1=ða
ffiffiffiffiffiffiffiffiffiffi
a=m

p
Þ is the mean motion and M�means the J2 per-

turbation effect in _M. In this approximation the elements a; e; i
remain constants and thus the complete solution for the secular
Hamiltonian can be written

r ¼ bGr2BðMÞ; ð9Þ

where the mean anomaly M is obtained as M ¼ Mð0Þ þ tðnþM�Þ
and the coordinates of r2BðMÞ are obtained in the normal way using
Kepler’s equation and the original unperturbed orbital elements.
The matrix bG gives effect due the X and x precession, while the
M� effect changes the rate of the two-body motion r2BðMÞ. The
precession matrix here consists of rotation around the z-axis by
the angle due to X precession followed by a rotation in the orbital
plane by the amount of x-precession. Note that these rotations
commute, i.e. their order does not matter. We use a form of the
Euler’s rotation formula

y ¼ f þ c1 j~�j2
� �

~�� f þ c2 j~�j2
� �

~�� ð~�� fÞ; ð10Þ

in which f is the rotated vector and y is the result. This operation
rotates f around the vector ~� and the rotation angle is equal to
the length of the vector ¼ j~�j. These ck’s are the Stumpff-functions,
which may be defined by Stumpff (1962), Stiefel et al. (1971)

sinðhÞ ¼ hc1ðh2Þ ¼ h� h3c3ðh2Þ ¼ h� h3=3!þ h5c5ðh2Þ
cosðhÞ ¼ c0ðh2Þ ¼ 1� h2c2ðh2Þ ¼ 1� h2=2!þ h4c4ðh2Þ:

ð11Þ

Writing z ¼ h2 the c-functions can be expanded in power series
as

cnðzÞ ¼
X1
j¼0

ð�zÞj

ðnþ 2jÞ! : ð12Þ

For small argument values this series can be used to evaluate
the functions, while for large argument value the trigonometric
expressions derivable from (11) are useful.

The effect of X precession can be obtained by taking
~�X ¼ ð0;0;DXÞ and the x-precession effect is produced be using
the (present) values of r and v to evaluate ~�x ¼ Dxr� v=jr� vj
and applying the operation (10) with both ~�X and ~�x. Since these
are rotations the total result is a rotation as proved long ago by
Euler (here the one in (9)).
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