
Mechanic: The MPI/HDF code framework for dynamical astronomy

Mariusz Słonina ⇑, Krzysztof Goździewski, Cezary Migaszewski
Toruń Centre for Astronomy, Nicolaus Copernicus University, Gagarin Str. 11, 87-100 Torun, Poland

h i g h l i g h t s

� A new open-source MPI-based general-purpose parallel code framework is introduced.
� It reduces the software development, task management and data post-processing effort.
� It allows to parallelize serial software on a CPU-cluster.
� The provided API allows to use Monte Carlo and evolutionary algorithms.
� No parallel programming knowledge is required to use the framework.

a r t i c l e i n f o

Article history:
Received 25 October 2013
Received in revised form 27 January 2014
Accepted 25 May 2014
Available online 5 June 2014

Communicated by J. Makino

Keywords:
Numerical methods
Task management
Message Passing Interface
Hierarchical Data Format

a b s t r a c t

We introduce the Mechanic, a new open-source code framework. It is designed to reduce the
development effort of scientific applications by providing unified API (Application Programming Inter-
face) for configuration, data storage and task management. The communication layer is based on the
well-established Message Passing Interface (MPI) standard, which is widely used on variety of parallel
computers and CPU-clusters. The data storage is performed within the Hierarchical Data Format
(HDF5). The design of the code follows core–module approach which allows to reduce the user’s codebase
and makes it portable for single- and multi-CPU environments. The framework may be used in a local
user’s environment, without administrative access to the cluster, under the PBS or Slurm job schedulers.
It may become a helper tool for a wide range of astronomical applications, particularly focused on
processing large data sets, such as dynamical studies of long-term orbital evolution of planetary systems
with Monte Carlo methods, dynamical maps or evolutionary algorithms. It has been already applied in
numerical experiments conducted for Kepler-11 (Migaszewski et al., 2012) and mOctantis planetary sys-
tems (Goździewski et al., 2013). In this paper we describe the basics of the framework, including code
listings for the implementation of a sample user’s module. The code is illustrated on a model Hamiltonian
introduced by (Froeschlé et al., 2000) presenting the Arnold diffusion. The Arnold web is shown with the
help of the MEGNO (Mean Exponential Growth of Nearby Orbits) fast indicator (Goździewski et al.,
2008a) applied onto symplectic SABAn integrators family (Laskar and Robutel, 2001).

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the field of dynamical astronomy several numerical
techniques have been proposed to determine the nature of the
phase space of planetary systems. The Monte Carlo methods (e.g.,
Holman and Wiegert, 1999), evolutionary algorithms (e.g.,
Goździewski et al., 2008b; Goździewski and Migaszewski, 2009)
or dynamical maps (e.g., Froeschlé et al., 2000; Guzzo, 2005;
Migaszewski et al., 2012; Goździewski et al., 2013) have become
standard research tools for determining possible or permitted

configurations, mass ranges or other physical data. These experi-
ments usually require intensive tests of sets of initial conditions,
that represent different orbital configurations. They involve direct
numerical integrations of equations of motion to study long-term
orbital evolution. To characterize the dynamical stability of orbital
models, so called fast chaos indicators are often used (e.g.,
Goździewski et al., 2008a). These numerical tools make it possible
to resolve efficiently whether a given solution is stable (quasi-
periodic, regular) or unstable (chaotic) by following relatively short
parts of the orbits. The fast indicators, like the Fast Lyapunov
Indicator (FLI, Froeschlé et al., 2000), the Frequency Map Analysis
(FMA, Laskar, 1993; Sidlichovský and Nesvorný, 1996), the Mean
Exponential Growth factor of Nearby Orbits (MEGNO, Cincotta
and Simó, 2000; Cincotta et al., 2003; Mestre et al., 2011), the

http://dx.doi.org/10.1016/j.newast.2014.05.006
1384-1076/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel./fax: +48 696023674.
E-mail addresses: m.slonina@astri.umk.pl (M. Słonina), k.gozdziewski@astri.

umk.pl (K. Goździewski), c.migaszewski@astri.umk.pl (C. Migaszewski).

New Astronomy 34 (2015) 98–107

Contents lists available at ScienceDirect

New Astronomy

journal homepage: www.elsevier .com/locate /newast

http://crossmark.crossref.org/dialog/?doi=10.1016/j.newast.2014.05.006&domain=pdf
http://dx.doi.org/10.1016/j.newast.2014.05.006
mailto:m.slonina@astri.umk.pl
mailto:k.gozdziewski@astri.umk.pl
mailto:k.gozdziewski@astri.umk.pl
mailto:c.migaszewski@astri.umk.pl
http://dx.doi.org/10.1016/j.newast.2014.05.006
http://www.sciencedirect.com/science/journal/13841076
http://www.elsevier.com/locate/newast


Spectral Number (SN, Michtchenko and Ferraz-Mello, 2001), are
well known in the theory of dynamical systems (Barrio et al.,
2009). In the past decade, they were intensively adapted to the
planetary dynamics (e.g., Froeschlé et al., 1997; Robutel and
Laskar, 2001; Goździewski et al., 2008a).

Depending on the dynamical model of a planetary system, its
numerical setup and the chaos indicator used to represent the
dynamical state, the simulation of a set of initial conditions may
require large CPU resources. However, since each test may be
understood as a separated numerical task, parallelization
techniques may be used, with tasks distributed among available
CPUs and evaluated in parallel. The basic approach relies on the
task farm model, in which independent tasks are processed on
worker nodes with the result collected by the master. From the
technical point of view, this algorithm requires implementation
of the CPU-communication layer, and should allow input prepara-
tion and result assembly for the post-processing. These issues are
addressed in general-purpose distributed task management sys-
tems, like HTCondor (Fields, 1993), or Workqueue (Yu et al.,
2010). Within such frameworks, the user-supplied, standalone
executable code performing computations (application) is distrib-
uted over a computing pool. The input and output for each soft-
ware instance is achieved via batch scripts (e.g. the Makeflow

extension for the Workqueue package), making this approach
application- and problem-dependent. This might be insufficient
for large and long-term numerical tests, such as studying the
dynamics of planetary systems. In particular, our recent work on
Kepler-11 (Migaszewski et al., 2012) and mOctantis (Goździewski
et al., 2013) systems required developing a new code framework,
the Mechanic, dedicated to conducting massive parallel simula-
tions. It has been turned out into general-purpose master–worker
framework, built on the foundation of the Message Passing Inter-
face (Pacheco, 1996). The Mechanic separates the numerical part
of the user’s code (a module) from its configuration, communica-
tion and storage layers (a core). This partition is achieved through
the provided Application Programming Interface (API). On the con-
trary to HTCondor and Workqueue packages, the task preparation
and result data storage is handled by the core of the framework.
The final result is assembled into one datafile, which reduces the
cost of post-processing large simulations. The storage layer is built
on top of the universal HDF5 data format (The HDF5 Group, 2012).
No MPI nor HDF5 programming knowledge is required to use the
framework, which makes it possible to parallelize ‘‘scalar’’ codes
relatively easily. The Mechanic may be used both system-wide
as well as in a local user’s environment under the control of job
schedulers, such as PBS or Slurm.

This paper is structured as follows. We give a short overview of
the Mechanic in Section 2. To explain programming concepts
behind the framework we illustrate it with the help of the Hamil-
tonian model introduced by Froeschlé et al. (2000). It reveals the so
called Arnold web, which represents a set of resonances of a quasi-
integrable dynamical systems. It has been intensively studied in
recent years (Cincotta, 2002; Lega et al., 2003; Guzzo et al., 2004;
Froeschlé et al., 2005; Froeschlé et al., 2006), and applied to study
long-term evolution of the outer Solar System (Guzzo, 2005;
Guzzo, 2006). In Section 3 we give short theoretical background
on this topic. The very fine details of the phase space obtained with
the dedicated module for the Mechanic are presented in the Sec-
tion 4. The technical implementation of the module is given in the
Appendix A.

2. Overview of the framework

The Mechanic provides a skeleton code for common technical
operations, including run-time configuration, memory and file

management, as well as CPU communication. It has been
developed to mimic the user’s application flow in a problem-
independent way (Listing 1). This is achieved via provided API,
which allows to reduce the user’s code to a module form, contain-
ing only its numerical part along with setup and storage specifica-
tions required to run it (Listing 2). The core of the framework loads
the module dynamically during the runtime, performs the setup
and storage stages according to these specs and executes the
numerical part.

The benefit of this core–module approach comes both in data
and task management. For instance, let us recall the concept of
dynamical maps. The phase space of the dynamical system is
mapped onto two-dimensional plane. Each point on that plane rep-
resents the dynamical state of the specific initial condition. From
the technical point of view, computing the dynamical map requires
execution of several numerical tasks that differs with the input,
and assembling the result in an accessible way for post-processing.
Assuming that each task (initial condition) is computed by a single
instance of the application, the simulation requires preparing the
input and collecting the result with the help of batch scripts.
Although the HTCondor and Workqueue frameworks provide
powerful task management tools, input and output data manage-
ment is left to the user. The Mechanic framework works more like
Makeflow (a Workqueue make engine), however, the user’s code
connected to the core is treated as a whole application with single
output datafile and the input that may be prepared programatical-
ly according to the information associated with the current task.

The base master–worker algorithm with single input and out-
put may be easily implemented with the minimum knowledge
on the MPI programming. However, the purpose of the Mechanic

is to reduce this development effort. With the help of the API, the
user’s code is separated from the task management layer. It allows
to use different communication patterns between nodes in a com-
puting pool (cluster) without modification of the module. In addi-
tion to the master–worker pattern, the master-only mode without
MPI communication is provided, which behaves similar to a single-
CPU application. Moreover, the API allows to implement different
communication patterns, if required by the user’s code.

The task assignment is performed within multidimensional grid
and is governed through the API. Although this suits best the con-
cept of dynamical maps, the API has been designed to support dif-
ferent assignment patterns, such as Monte Carlo methods. The key
design concept of the Mechanic is a task pool. It represents a set of
numerical tasks to perform for a particular setup (i.e. single
dynamical map). The framework allows to create task pools
dynamically depending on the results, with different configuration,
storage and number of tasks. This helps to implement evolutionary
algorithms and processing pipelines despite of number of CPUs
involved in the simulation.

The result data, among with the run-time configuration, is
assembled into one master datafile. Each task may hold unlimited
number of multidimensional arrays of all native datatypes.
Depending on the application requirements, the results obtained
from all tasks may be combined in different modes. This includes
texture, represented by a single dataset that follows the grid
pattern (suitable for image-like results, such as dynamical maps),
group (datasets are combined into separate groups per task), list
(a spreadsheet-like dataset) and pm3d (dataset prepared for pm3d
mode of Gnuplot). The usage of the single master file helps to
reduce the post-processing effort. Numerous HDF-oriented appli-
cations are available (such as h5py), making it possible to use com-
putation results independently of the host software.

For long-term simulations the checkpoint feature is important.
Indeed, during the computations, the Mechanic provides the
incremental snapshot file with the current state of the simulation.
The file is self-contained, and includes run-time configuration, so

M. Słonina et al. / New Astronomy 34 (2015) 98–107 99



Download English Version:

https://daneshyari.com/en/article/1778962

Download Persian Version:

https://daneshyari.com/article/1778962

Daneshyari.com

https://daneshyari.com/en/article/1778962
https://daneshyari.com/article/1778962
https://daneshyari.com

