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h i g h l i g h t s

� The ‘‘complex-plane strategy’’ is applied to the post-Newtonian approximation.
� The computations focus on the rotating polytropic models.
� Comparisons with previous results show improved accuracy.
� A ‘‘hybrid approximative scheme’’ is briefly discussed.
� This scheme seems to improve further the accuracy of the results.
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a b s t r a c t

In this paper, the problem of computing uniformly rotating polytropic models in the post-Newtonian
approximation is revisited by applying to its treatment the so-called ‘‘complex plane strategy’’. We
achieve to remove certain difficulties, otherwise involved in the computations of general-relativistic
polytropic models simulating rapidly rotating neutron stars, and to compute results of improved accuracy
when compared to corresponding results of other reliable numerical methods.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

To study rapidly rotating neutron stars in hydrostatic equilib-
rium, we consider the relativistic and rotational effects as decou-
pled perturbations acting on a nonrotating Newtonian
configuration obeying the polytropic ‘‘equation of state’’ (EOS,
EOSs). The original contributions to such an approach, so-called
‘‘post-Newtonian approximation’’ (PNA), are due to Chandrasekhar
(1965), Krefetz (1966, 1967), and Fahlman and Anand (1971).

In this study, we revisit the problem by applying to the compu-
tations the so-called ‘‘complex plane strategy’’ (CPS). This method
consists in solving all differential equations involved in the PNA’s
computational scheme in the complex plane. Numerical integra-
tions are carried out by the Fortran code dcrkf54.f95 (Geroyannis
and Valvi, 2012), which is a Runge–Kutta-Fehlberg code of fourth
and fifth order modified so that to integrate ‘‘initial value

problems’’ (IVP, IVPs) established on systems of first-order ‘‘ordin-
ary differential equations’’ (ODE, ODEs) of complex-valued func-
tions in one complex variable along prescribed complex paths.

2. Basics of the post-Newtonian approximation

In the framework of PNA, the equation of hydrostatic equilib-
rium for a uniformly rotating relativistic configuration is written
as (cf. (Krefetz, 1967), Eq. (1))

1� nþ 1
c2

p
q

� �
rp ¼ qrUeff : ð1Þ

where the effective potential Ueff is given by (cf. (Krefetz, 1967),
Eq. (2))

Ueff ¼ U þ 1
2

X2 l2 þ Urel; ð2Þ

and the relativistic potential Urel has the form (cf. (Krefetz, 1967),
right-hand side of Eq. (2))
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Urel ¼
1
c2

X2 l2

2

 !2

þ 4U
X2 l2

2

 !
þ 2U� 4X2 l2 D

24 35; ð3Þ

the potentials U; U, and D obey Eqs. (3a), (3b), and (4) of (Krefetz,
1967), respectively, q is the rest-mass density, p the pressure, X
the uniform angular velocity, l the distance from the rotation axis,
and c the speed of light.

In this study, we assume that the pressure p and the rest-mass
density q obey the polytropic EOS

p ¼ K q1þ 1=nð Þ; ð4Þ

where K is the polytropic constant and n the polytropic index lying
in the interval n 2 ½0; 5Þ ¼ In � R (the value n ¼ 5 yields a model
with infinite radius). The polytropic density function Hðn; lÞ, where
l ¼ cosð#Þ, and the dimensionless length n are defined by Fahlman
and Anand (1971) (Eq. (10))

q ¼ qc Hn;

r ¼ ðnþ 1Þpc

4pGq2
c

� �1=2

n ¼ an;
ð5Þ

where qc is the central density, pc the central pressure, and G the
gravitation constant. The central density qc is taken as the polytrop-
ic unit of the rest-mass density and the model parameter a as the
polytropic unit of length; accordingly, Hn is the dimensionless
rest-mass density and n the dimensionless length.

The integral of hydrostatic Eq. (1) in the Newtonian limit ob-
tains the form ((Fahlman and Anand, 1971), Eq. (12))

U ¼ nþ 1ð Þ pc

qc
H� 1

2
X2 a2 n2 1� l2� �

þ Up; ð6Þ

where the parameter Up is the surface gravitational potential at the
pole. Alternatively, Up can be readily incorporated into the potential
U (see e.g. (Horedt, 2004), Eq. (4.2.55)).

Next, we introduce the dimensionless perturbation parameters
t and r ((Fahlman and Anand, 1971), Eq. (15)),

t ¼ X2

2pGqc
; r ¼ 1

c2

pc

qc
; ð7Þ

so-called ‘‘rotation parameter’’, representing the effects of rotation,
and ‘‘gravitation parameter’’ or ‘‘relativity parameter’’, representing
in turn the post-Newtonian effects of gravitation. Accordingly, we
can write the generalized Lane-Emden equation in the form (cf.
(Fahlman and Anand, 1971), Eqs. (24) and (25))

r2H ¼ �Hn þ tþ rE; ð8Þ

where E is the first-order term in r ((Fahlman and Anand, 1971), Eq.
(30a)); in fact, only the zeroth-order term E0 in both t and r, in-
volved in the right-hand side of this equation, is taken into account
here). Terms of order OðrtÞ and Oðrt2Þ (cf. (Fahlman and Anand,
1971), Eq. (25)) are neglected in the present study.

According to PNA, the polytropic density function can be ex-
panded as (cf. (Fahlman and Anand, 1971), Eqs. (26), (35), and (62))

Hðn;lÞ ¼
X4

i¼0; 2

PiðlÞHiðnÞ

¼ P0ðlÞ a0h00ðnÞ þ a1h10ðnÞ þ a2h20ðnÞ þ a3h30ðnÞ½ �
þ P2ðlÞ a1A12h12ðnÞ þ a2 h22ðnÞ þ A22h12ðnÞ½ �f g
þ P4ðlÞ a2 h24ðnÞ þ A24h14ðnÞ½ �f g

¼
X3

i¼0

ai

X4

j¼0

AijðnÞPjðlÞ

¼ a0 h00ðnÞP0ðlÞ
þ a1 h10ðnÞP0ðlÞ þ A12h12ðnÞP2ðlÞ½ �
þ a2 h20ðnÞP0ðlÞ þ h22ðnÞ þ A22h12ðnÞ½ �P2ðlÞf
þ h24ðnÞ þ A24h14ðnÞ½ �P4ðlÞg
þ a3 h30ðnÞP0ðlÞ;

ð9Þ

where ai are the perturbation parameters ((Fahlman and Anand,
1971), Eq. (24)); namely, a0 ¼ 1; a1 ¼ t; a2 ¼ t2; a3 ¼ r; a4 ¼ tr,
and a5 ¼ t2r. In the present study, we neglect terms of order
Oða4Þ and Oða5Þ, as well as terms in Legendre polynomials of degree
higher than P4. The functions Hi are readily recognized, e.g.,

H2ðnÞ ¼ a1A12h12ðnÞ þ a2 h22ðnÞ þ A22h12ðnÞ½ �; ð10Þ

and likewise the functions Aij, e.g.,

A22ðnÞ ¼ h22ðnÞ þ A22h12ðnÞ: ð11Þ

The functions hij are involved in the differential equations defined
by Eqs. (31)–(38) of Fahlman and Anand (1971) with initial condi-
tions given by Eqs. (39)–(41) of Fahlman and Anand (1971). Note
that the function h00 coincides with the Lane–Emden function h of
the undistorted Newtonian configuration, since the differential
equation (37) in Fahlman and Anand (1971) reduces for i ¼ 0 and
j ¼ 0 to the well-known classical Lane–Emden equation. The param-
eters Aij ((Fahlman and Anand, 1971), Eq. (59)) multiply properly
the homogeneous solutions of hij ((Fahlman and Anand, 1971),
Eqs. (42), (43)) so that certain boundary conditions be satisfied.

In detail, the functions hij obey the differential equations
(cf. (Fahlman and Anand, 1971), Eqs. (37) and (38))

d2hij

dn2 þ
2
n

hij

dn
� jðjþ 1Þ

n2 hij ¼ Sij; ð12Þ

for i ¼ 0; 1; 2; 3; j ¼ 0; 2; 4. Odd js and, accordingly, the respective
functions hi1 and hi3 do not appear in this perturbation analysis,
since the resulting configuration has to be symmetric under rever-
sal of the direction of rotation. Hence, terms multiplying the odd
Legendre polynomials P1; P3 must be zero.

The non-trivial functions Sij are given by Fahlman and Anand
(1971) (Appendix A),

S00¼�hn
00;

S10¼�nhn�1
00 h10þ1;

S1j¼�nhn�1
00 h1j; j¼2;4;

S20¼�nhn�1
00 h20�

nðn�1Þ
2

hn�2
00 h2

10þ
1
5

A2
12h2

12

� �
;

S22¼�nhn�1
00 h22�

nðn�1Þ
2

hn�2
00 2A12h12 h10þ

1
7

A12h12

� �� �
;

S24¼�nhn�1
00 h24�

nðn�1Þ
2

hn�2
00

18
35

A2
12h2

12

� �
;

S30¼�nhn�1
00 h30þ

C
2C�2

d2h2
00

dn2 þ
2
n

dh2
00

dn

 !
�2ðnþ1ÞS30�

3C�2
C�1

hnþ1
00 ;

ð13Þ

where (cf. (Fahlman and Anand, 1971), Eq. (7))

C ¼ nþ 1
n

: ð14Þ

According to Fahlman and Anand (1971) (Appendix A), the term S30

driven by the coefficient 2ðnþ 1Þ in S30 has the form

S30 ¼ c00 hn
00 þ hnþ1

00 : ð15Þ

where the constant c00 (Fahlman and Anand, 1971, Eqs. (47a) and
(48)) is to be determined.

The details on the derivation of the homogeneous-solutions
multipliers Aij (cf. (Fahlman and Anand, 1971), Eqs. (42) and
(43)) have to do with the continuity of the potential and of its first
derivative at the surface of the star (cf. (Fahlman and Anand, 1971),
Eq. (52)),

Usurface ¼ Ue
surface;

@U
@n

� �
surface

¼ @Ue

@n

� �
surface

: ð16Þ
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