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a b s t r a c t

The time scale for cooling of the gravitationally bound gaseous intracluster medium (ICM) is not deter-
mined by radiative processes alone. If the ICM is in quasi-hydrostatic equilibrium in the fixed gravita-
tional field of the dark matter halo then energy losses incurred by the gravitational potential energy of
the gas should also be taken into account. This ‘‘gravitational heating” has been known for a while using
explicit solutions to the equations of motion. Here, we re-visit this effect by applying the virial theorem to
gas in quasi-hydrostatic equilibrium in an external gravitational field, neglecting the gravity of the gas.
For a standard NFW form of halo profiles and for a finite gas density, the response of the gas temperature
to changes in the total energy is significantly delayed. The effective cooling time could be prolonged by
more than an order of magnitude inside the scale radius ðrsÞ of the halo. Gas lying at a distance twice the
scale radius, has negative heat capacity so that the temperature increases as a result of energy losses.
Although external heating (e.g. by AGN activity) is still required to explain the lack of cool ICM near
the center, the analysis here may circumvent the need for heating in farther out regions where the effec-
tive cooling time could be prolonged to become larger than the cluster age and also explains the increase
of temperature with radius in these regions.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Clusters of galaxies are the most massive virialized objects
observed in the Universe. Their potential depths correspond to virial
temperatures of 1–10 keV (107–108 K) and the baryon number den-
sity in the inner regions could be as high as 0.1 cm�3 (e.g. Vikhlinin
et al., 2005; Pointecouteau et al., 2005). For these temperatures
and densities, radiative losses are expected to the bring the temper-
ature in the central regions down to J 104 K within the available
time. Yet in none of the observed clusters does the temperature drop
to the level dictated by cooling alone. The absence of significant
amounts of cold gas in the cores of massive clusters is a major puzzle
posed by X-ray observations of massive clusters (e.g. Peterson et al.,
2001). Hence, efficient heating mechanisms must operate at the
cores of all cooling clusters. The most popular mechanism for sup-
pressing cooling is energy released by an AGN in the central cluster
galaxy (cf. Quilis et al., 2001; Babul et al., 2002; Kaiser and Binney,
2003; Dalla Vecchia et al., 2004; Roychowdhury et al., 2004; Voit
and Donahue, 2005; Nipoti and Binney, 2005, and references there-
in) or by multiple AGN activity in all galaxies in the cores of clusters
(Nusser et al., 2006; Eastman et al., 2007; Nusser and Silk, 2008).
Over-pressurized ejecta from the AGN transform into hot bubbles
that eventually reach pressure equilibrium with the ICM and

proceed to rise buoyantly away from the center. These bubbles could
heat the ICM by means of shock waves generated as they expand to
reach the ICM pressure (Nusser et al., 2006), and by drag forces when
they become buoyant (e.g. Churazov et al., 2001). Mechanical activ-
ity near the center could also generate sound waves which are
believed to eventually dissipate their energy in the ICM (Pringle,
1989; Ruszkowski et al., 2004; Heinz and Churazov, 2005; Fujita
and Suzuki, 2005; Sanders and Fabian, 2007). To balance cooling in
a cluster of X-ray luminosity of Lx�1044 erg s�1, a central AGN must
produce �1060 erg over the entire life-time of the cluster. For the
most massive clusters (potential depths corresponding to velocity
dispersions >500 km/s) the required heating could be more than
an order of magnitude larger than the observed range of AGN energy
output in galaxy clusters, based on the pV content of X-ray cavities
(e.g. Best et al., 2007). This is not too worrying since weak shocks
could certainly compensate for the missing energy needed to bal-
ance cooling. For less massive clusters the pV energy is sufficient to
balance cooling (e.g. Bîrzan et al., 2004). The challenge, however, is
to arrange for efficient energy transport from the AGN over the entire
cooling core, or out to distances of up to �100 kpc.

The temperature in the inner regions increases gradually as we
move away from the center. At first, this behavior may seem rea-
sonable since the radiative cooling becomes more efficient nearer
to the center. But, the cooling time is significantly shorter than
the cluster age over a significant part of the inner regions and
the ICM had ample opportunity to cool to very low temperatures
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(e.g. Fig. 12 in Wise, McNamara and Murray, 2004). So why is there
not a temperature plateau extending over the region where the
cooling time is shorter than the cluster age? One explanation
might be that, on account of the lower density, heat conduction
is more significant as we move away from the center. However,
heat conduction is not universally important in these regions
(e.g. Wise, McNamara and Murray, 2004). Here show that the cool-
ing time could significantly be modified when the potential energy
of the ICM in the dark halo is taken into account. We will use a ver-
sion of the virial theorem to show that the potential energy will ab-
sorb some of the energy loss incurred by the system. In some cases
the potential energy will decrease by an amount larger than the ac-
tual loss, forcing the system to compensate the energy difference
by increasing its thermal energy. This is the case of negative heat
capacity. This phenomenon is sometimes referred to as gravita-
tional heating and has been discussed previously (e.g. Fabian and
Nulsen, 1977) and is evident in numerical simulations of the
ICM. However, the description in terms of the virial theorem as is
done here is new and offers a simple analysis for assessing the
dependence of the effective cooling time on the assumed halo
profile.

2. The virial theorem

Hereafter we will assume spherical symmetry and denote by r
the distance from the center. Let qgðrÞ, uðrÞ, and P ¼ ðc� 1Þqgu
be, respectively, the gas density, energy per unit mass, and pres-
sure, where c is the adiabatic index. The temperature, T, is related
to u by u ¼ kBT=ðc� 1Þ=m, where m is the mean particle mass and
kB is the Boltzman constant. We assume a gas obeying the equation

qgg � dP
dr
¼ 0; ð1Þ

where g is the gravitational force field per unit mass. This equation
is applicable in quasi-hydrostatic equilibrium so that the accelera-
tion of the gas is negligible. Multiplying (1) by r and integrating over
the volume from r ¼ 0 to R0 gives the virial theorem

3ðP � P0ÞV þW ¼ 0; ð2Þ

where V ¼ ð4p=3ÞR3
0, P0 ¼ PðR0Þ is the external pressure, P ¼ 4p

R R0
0

drr2PðrÞ=V is the average pressure inside R0, and the gravitational
term, W, is

W ¼ 4p
Z R0

0
r3qggðrÞdr: ð3Þ

A more general derivation which includes gas motions could be
found in Ostriker and McKee (1988). The energy of the system in
the volume V is written as the sum of the thermal energy
PV=ðc� 1Þ / NkBT (N is the total number of particles) and the grav-
itational potential energy, U

E ¼ U þ PV
c� 1

; ð4Þ

where

U ¼ 4p
Z R0

0
qgUr2dr; ð5Þ

and the system is assumed to reside in a static external gravita-
tional potential U and neglected gravity of the gas.

From the virial theorem (2) and the energy Eq. (4) we obtain
global relations between infinitesimal variations (denoted by the
prefix d ) in the total energy, E, the thermal energy Eth, V, W and
U. Keeping a constant external pressure P0 these relations are

dW ¼ 3P0dV � 3ðc� 1ÞdEth; ð6Þ

and

dE ¼ dU þ dEth; ð7Þ

where we have used the expression Eth ¼ PV=ðc� 1Þ for the thermal
energy. These relations must hold for any change in the state of the
system. For radiative losses, the energy loss in time dt is
dE ¼ neKðTÞdt where ne is the electron number density and K is
the cooling rate. Even if this energy is extracted initially from the
thermal part, Eth, subsequent evolution of the system will establish
the relations (6) and (7). We are working under the assumption of
quasi-hydrostatic equilibrium so that any bulk motions generated
during this process are neglected. In any case, if dissipation is
important then significant gas motions will be converted into heat,
restoring the above relations.

We are set now to derive a relation between dE and dEth. We
write dV ¼ ðdV=dWÞdW in the virial relation (6) to obtain

dW ¼ 3ðc� 1Þ
3P0

dV
dW � 1

dEth: ð8Þ

Writing dU ¼ ðdU=dWÞdW and dV ¼ ðdV=dWÞdW in the relation (7)
while taking dW from (8) we get

dE ¼ CdEth; ð9Þ

where

C ¼ 1þ dU
dW

3ðc� 1Þ
3P0

dV
dW � 1

: ð10Þ

The quantity C gives the ratio of the heat capacity to the standard
thermodynamic heat capacity computed without gravity. Hence
we call C the relative heat capacity (RHC). The sign of C determines
whether the thermal energy, Eth, and hence the temperature,
T / Eth=N, will increase or decrease as a result of changing the total
energy, E. If C < 0 holds, then the heat capacity is negative, i.e. the
temperature increases when we extract energy from the system. For
P0 ¼ 0, the condition C < 0 implies

dU
dW

>
1

3ðc� 1Þ : ð11Þ

For positive RHC, C > 0, the response time of the gas temperature to
variations in its energy is prolonged by a factor C. For example, the
effective cooling time is Ctcool where tcool � kBT=ðneKÞ is the usual
radiative cooling time.

3. Applications to various forms of halo gravitational potentials

We begin with the calculation of the RHC, C, for power-law
potentials of the form, U ¼ A=rn so that g ¼ An=rnþ1, where n–0
and A are constants. The constant A is negative for n > 0 and posi-
tive otherwise. In this case W ¼ nU and dU=dW ¼ 1=n and for
P0 ¼ 0 we have

C ¼ 1� 3
n
ðc� 1Þ: ð12Þ

Thus C is negative for

0 < n < 3ðc� 1Þ; ð13Þ

which gives 0 < n < 2 for c ¼ 5=3. To estimate the RHS, C, for a non-
vanishing external pressure, P0, we need the quantity dW=dV which
depends on gas density profile, qg, in the system. We work here
with a power-law density profile of the form, qg ¼ B=ra and we
compute dW=dV under variations of the external radius R0 assum-
ing that the index a and the total mass, M0, inside R0 remain con-
stant. Since M ¼ 4p

R
r2B=radr we get

B ¼ 3� a
4p

MRa�3
0 : ð14Þ
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