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a b s t r a c t

We describe a newly developed hydrodynamic code for studying accretion disk processes. The numerical
method uses a finite volume, non-linear, Total Variation Diminishing (TVD) scheme to capture shocks and
control spurious oscillations. It is second-order accurate in time and space and makes use of a FARGO-
type algorithm to alleviate Courant–Friedrichs–Lewy time step restrictions imposed by the rapidly rotat-
ing inner disk region. OpenMP directives are implemented enabling faster computations on shared-mem-
ory, multi-processor machines. The resulting code is simple, fast and memory efficient. We discuss the
relevant details of the numerical method and provide results of the code’s performance on standard test
problems. We also include a detailed examination of the code’s performance on planetary disk–planet
interactions. We show that the results produced on the standard problem setup are consistent with a
wide variety of other codes.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The study of almost all astronomical objects relies on an under-
standing of their hydrodynamics. Indeed, for many such objects the
involved hydrodynamics are complex enough to require numerical
modeling. The process of numerical modeling usually proceeds by
writing partial differential equations describing the behavior of a
continuous medium as an equivalent set of algebraic equations
for a finite set of discretized elements. This discretization can gen-
erally be performed in two different ways. In an Eulerian approach,
one discretizes the spatial domain into volumes termed grid cells.
The fluid is considered to move through this fixed background grid.
By contrast, in a Lagrangian approach the fluid is discretized into
fluid elements (or ‘particles’) which can then move freely according
to their initial velocities, and only their interactions need to be
modeled. Lagrangian methods work well in situations with large
background flows where Eulerian methods would spend the bulk
of their time advecting the (uninteresting) balanced flow, accumu-
lating numerical errors with the numerous iterations required.

Lagrangian methods have a large dynamic range in length but
not in mass, achieving good spatial resolution in high-density re-
gions but performing poorly in low-density regions. In addition,
the usual implementations of Lagrangian methods, based on
smoothed particle hydrodynamics (SPH), do not easily allow the
higher spatial accuracy that grid methods can employ nor do they
capture shocks as accurately as grid methods. By contrast, Eulerian
methods provide a large dynamic range in mass but not in length.
In general they are also computationally faster by several orders of
magnitude, easier to implement, and easier to parallelize.

The RAPID code (Rapid Algorithm for Planets In Disks), which we
present here, uses an Eulerian approach, adapted for a cylindrical
grid. While we focus on planet–disk interactions in this paper, the
code is intended for the general study of accretion disks containing
a dominant central mass. In such systems, the gas disk surrounding
the central object is of a small enough mass that its self-gravity may
be ignored. Such disks will have a roughly Keplerian velocity profile
resulting from the mass of the central object. In order to obtain
higher algorithm efficiency in the presence of this Keplerian flow,
we make use of a FARGO-type algorithm (Masset, 2000). The algo-
rithm’s underlying strategy is to subtract off the bulk flow, which
can be considered simply a translation of grid quantities, leaving
the dynamically important residual velocity. RAPID is second-order
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accurate in space and time. Advection is accomplished through a
non-linear Total Variation Diminishing (TVD) scheme, which helps
to control spurious oscillations. Time-stepping is accomplished
through a standard Runge–Kutta scheme. Operator splitting is used
to account for multiple dimensions and source terms such as those
due to gravitational potentials and viscosity.

In Section 2, we outline the fluid equations to be solved and dis-
cuss considerations of angular momentum important for accuracy
on cylindrical grids. In Section 3, we discuss the details of the RAPID
algorithm. We provide results of basic hydrodynamical tests in Sec-
tion 4 and demonstrate the code’s performance on typical planetary
disk setups in Section 5. Conclusions are presented in Section 6.

2. Eulerian hydrodynamics

The Navier–Stokes equations may be written as

oq
ot
þ $ � qu ¼ 0 ð1Þ

oqu
ot
þ $ � ½quuþ pI� ¼ �q$/þ $ � r ð2Þ

oqe
ot
þ $ � ½ðqeþ pÞu� ¼ �qu � ð$/Þ þ $ � ½u � r� � $ � w; ð3Þ

for the mass density q, momentum density qu ¼ qðu1;u2; u3Þ, and
total energy density qe ¼ qeþ 1

2 qu2 of a fluid volume. The symbols
e and p represent the internal energy per mass and the pressure of
the fluid, / represents the potential due to a body force (such as that
from an external gravitational field), r represents the non-isotropic
component of the stress–strain tensor for the fluid, and w represents
any heat flux. We use the symbol I for the identity matrix and note
that the combination quu � quiuj is a direct product yielding a ma-
trix for the momentum fluxes.

These equations express the transfer of mass, linear momen-
tum, and energy within the fluid volume written out in an arbitrary
coordinate system. In terms of a general solution vector
q ¼ ðq;qu1;qu2;qu3;qeÞ, flux tensor FðqÞ, and source vector S,
these equations all have the same formally simple form

oq
ot
þ $ � F ¼ S: ð4Þ

In the case where S ¼ 0 the equations reduce to the conservation
form of the Euler equations, expressing non-dissipative advection
of fluid quantities.

In Cartesian coordinates and for the solution vector
q ¼ ðq;qux;quy;quz;qeÞ, the Euler equations describe the evolu-
tion of five conserved scalar quantities. However, written in cylin-
drical coordinates, where x ¼ ðr; h; zÞ, and for the natural choice of
solution vector q ¼ ðq;qur ;quh;quz;qeÞ, only three components of
this vector are conserved scalar quantities. The quantities qur and
quh are not conserved. We thus choose to solve for the solution
vector q ¼ ðq;qur ;H;quz;qeÞ, where the quantity H ¼ qrðuhþ
rXÞ is the fluid’s angular momentum in the inertial frame (we will
refer to this quantity as the inertial angular momentum). It in-
cludes contributions from the fluid’s angular velocity x ¼ uh=r, as
well as the reference frame’s angular velocity X, assumed to be ori-
ented along the z-axis. Because inertial angular momentum is con-
served in a rotating system, it is a more natural physical variable to
use and doing so improves the accuracy of the results (see Section
5.4). In Appendix A we write out modified versions of Eqs. (1)–(3)
for this choice of solution vector, expressed in cylindrical
coordinates.

3. Numerical method

The solution method we describe is based on the relaxing Total
Variation Diminishing (TVD) method by Jin and Xin (1995). This

method has been successfully applied by Pen (1998) and Trac
and Pen (2003, 2004) to solve the Euler equations on Cartesian
grids in astrophysical simulations.

3.1. Relaxation system

The relaxing TVD method solves the Euler equations by assum-
ing the equations may be split into components corresponding to
leftward and rightward-travelling waves. In place of the Euler
equation (Eq. (4) with S ¼ 0), the following coupled system is
solved along a single grid direction for the solution vector q:

oq
ot
þ o

ox
ðcwÞ ¼ 0 ð5Þ

ow
ot
þ o

ox
ðcqÞ ¼ 0: ð6Þ

The relations q ¼ qR þ qL, and w ¼ F=c ¼ qR � qL, define the solution
variables in terms of the leftward and rightward-travelling waves.
Eq. (6) represents a separate equation for the evolution of the nor-
malized flux vector w. The variable c is a positive-definite function
which has the interpretation of a speed associated with a particular
grid cell. The solution is stable in the sense that its total variation
(see Section 3.3) decreases as long as all values of c are greater than
or equal to the largest eigenvalue of the flux Jacobian oFðqÞ=oq (Jin
and Xin, 1995). Because the waves are split into separate rightward
and leftward components, the maximum eigenvalue of the Jacobian
is limited for both components by the value ci ¼ juij þ cs where cs is
the sound speed for the cell. Substituting these definitions into Eqs.
(5) and (6) decouples the system and yields

oq
ot
þ oFR

ox
� oFL

ox
¼ 0; ð7Þ

where FL ¼ cqL and FR ¼ cqR. The original coupled system, Eqs. (5)
and (6), is then equivalent to the solutions of the two separate left-
ward- and rightward-moving waves given in Eq. (7). It is now pos-
sible to separately solve for each of the travelling waves and add the
results to determine the full solution along a single direction.

3.2. Solution of wave-split, one-dimensional Euler equations

In order to solve for the advection of the separately travelling
waves, we implement a second-order Runge–Kutta scheme which
uses a TVD flux-interpolation scheme to control spurious oscilla-
tions. Consider the integral form of the classical Euler equations
(Eq. (4) with S ¼ 0) in one dimension and for a single conserved
fluid quantity so that qðx; tÞ � qðx; tÞ. We can write this form as

o

ot

Z xB

xA

qðx; tÞdxþ o

ox

Z xB

xA

Fðx; tÞdx ¼ 0: ð8Þ

We discretize the N-dimensional spatial domain into a uniformly
spaced grid of points xi, defined to be the centers of uniformly
packed rectangular N-volumes (cells). Using this simple discretiza-
tion, fluid quantities defined at the cell-centered grid points may be
interpreted as the cell-averaged value of the solution vector for that
grid point. For a single one-dimensional cell at location xi and with
boundaries at xA ¼ xi�1=2 and xB ¼ xiþ1=2, the integrals

R xB
xA

qdx andR xB
xA

Fðx; tÞdx in Eq. (8) represent the cell-averaged fluid quantities
qi and Fi. Discretizing Eq. (8) in terms of these cell-averaged quan-
tities yields

qtþDt
i � qt

i

Dt
þ

Ft
iþ1=2 � Ft

i�1=2

Dx
¼ 0; ð9Þ

where superscripts reference the specific time step and subscripts
reference the spatial cell. Computing qtþDt

i for any grid cell thus re-
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