

Available online at www.sciencedirect.com

Dyes and Pigments 70 (2006) 91-98

www.elsevier.com/locate/dyepig

Quantum chemical study on the electronic structure and second-order nonlinear optical properties of salen-type Schiff bases

Iran Sheikhshoaie^a, Walter M.F. Fabian^{b,*}

^a Chemistry Department, Faculty of Science, Shahid-Bahonar University of Kerman, P.O. Box 76175-133, Kerman, Iran ^b Institut für Chemie, Karl-Franzens Universität Graz, Heinrichstr. 28, A-8010 Graz, Austria

> Received 15 March 2005; accepted 12 April 2005 Available online 5 July 2005

Abstract

Semi-empirical (ZINDO-SOS), time-dependent density functional theory and ab initio quadratic response function (DDRPA) calculations on a series of donor-acceptor substituted salen-type Schiff bases are used to aid in the design of dyes with useful optical nonlinearities (molecular quadratic hyperpolarizabilities β_{vec}). 4-Phenylazo-2-phenyliminomethylphenols 1 are calculated to be less suitable as nonlinear optical materials than the isomeric 5-phenylazo-2-phenyliminomethylphenols 2. The largest hyperpolarizabilities are predicted for compounds with an acceptor-containing phenylazo and a donor-substituted phenyliminomethyl moiety. The calculations also clearly indicate the intramolecular charge transfer nature of the first $\pi\pi^*$ -transition in the investigated Schiff bases.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Time-dependent density functional theory; Ab initio quadratic response function; Semi-empirical calculations; ZINDO; Electronic excitation energies; Hyperpolarizabilities; Nonlinear optics; Schiff bases

1. Introduction

Aromatic Schiff bases, especially those derived from reaction of salicylic aldehydes with aromatic amines (salen-type Schiff bases), form complexes with a variety of metal ions [1,2]. Among the various possible applications of these complexes [3–7], their nonlinear optical properties for the design of materials in modern communication technology [8–13] are of fundamental importance [14,15]. Besides the experimental determination of macroscopic optical nonlinearities of Schiff base derivatives [16] by the powder technique [17], or their molecular hyperpolarizabilities [18] by electric field induced second

E-mail address: walter.fabian@uni-graz.at (W.M.F. Fabian). *URL*: http://www.uni-graz.at/walter.fabian harmonic generation (EFISH) [19,20], quantum chemical procedures for the calculations of NLO properties [12,21–26] also have been applied to a series of donor– acceptor substituted Schiff bases [18,27]. Recently, we reported on the synthesis, spectroscopic characterization and semi-empirical AM1 calculations of arylazo substituted salen-type Schiff base ligands [28,29]. Here we present a semi-empirical and ab initio computational study of a series of such salen-type Schiff bases 1–4 (Scheme 1) with special emphasis on the influence of the nature (donor vs acceptor) and position of substituents on molecular quadratic hyperpolarizabilities (β_{vec}).

2. Computational details

The geometries of all Schiff bases 1-4 (Scheme 1) were optimised using the semi-empirical AM1 Hamiltonian

^{*} Corresponding author. Tel.: +43 316 380 8636; fax: +43 316 380 9840.

^{0143-7208/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.dyepig.2005.04.011

Scheme 1. Structures of the investigated Schiff bases.

[30,31]. For several selected derivatives (1a-e, 2a-e) geometry optimisation was also done with Becke's three parameter hybrid density functional theory – HF procedure [32] using the Lee-Yang-Parr correlation functional [33] and the 6-31G(d) basis set (B3LYP/ 6-31G(d)) [34]. Electronic excitation energies and hyperpolarizabilities were obtained by the semi-empirical ZINDO procedure [35,36]. In addition, for 1a-c and **2a**-c, time-dependent density functional theory (TDDFT [37,38], B3LYP/6-31G(d)) and ab initio HF quadratic response function (double direct random phase approximation, DDRPA) calculations [39,40] with Ahlrichs' VDZ basis [41], were used to obtain electronic excitation energies and hyperpolarizabilities, respectively.

3. Results and discussion

The intramolecular hydrogen bond in 1–4 considerably restricts the conformational freedom. Thus, in 3, only one single rotamer is possible; the orientation of the azo group with respect to the central aromatic ring in both 1 and 2 leads to two conformers ($\tau_1 = \tau$ (C3–C4– N=N) ~ 0° and $\tau_1 \sim 180^\circ$, for atom numbering, see Scheme 1). For molecules with $\mathbb{R}^2 \neq H$, each one of these two rotamers leads to two structures depending on the orientation of \mathbb{R}^2 . Compounds **4a**,**b** may also exist in 4 different conformations (Scheme 2). We will discuss the influence of these conformations on calculated hyperpolarizabilities and electronic transition energies in detail for **1d**, **2d**, and **4a**. Besides the effect of different conformations, other key structural alterations have also been found to influence calculated β -values [42]. Consequently, to address this possibility, we compare ZINDO-SOS calculated quadratic hyperpolarizabilities of **1a**-**e** and **2a**-**e** obtained with AM1 and B3LYP/ 6-31G(d), respectively, geometries.

3.1. Electronic excitation energies

Electronic excitation energies (wavelengths λ/nm), oscillator strengths f, and nature of the respective excited state (principal CI-coefficients) calculated by the TDDFT method for 1a-c and 2a-c are summarised in Table 1.

For all derivatives, the calculations predict a very small intensity (low oscillator strength f) for the longest wavelength transition in line with its $n\pi^*$ -character. Experimentally, for **1b** and **1d** the UV/vis maxima were

Download English Version:

https://daneshyari.com/en/article/177928

Download Persian Version:

https://daneshyari.com/article/177928

Daneshyari.com