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Abstract

As variants of the velocity–position single scaling method of Fukushima, which extends Nacozy’s manifold correction scheme to mon-
itor the integrated position and velocity by using the integral invariant relation and the same spatial scale transformation, a new velocity
scaling method and a new position scaling method for correcting the varying Kepler energy of each body in an n-body problem of plan-
etary dynamics are presented. Compared with Fukushima’s idea, the new schemes are simple to operate. Like other existing methods
including the method of Fukushima and of Wu et al., the two new methods not only are almost the same effectiveness in significantly
improving the orbital semi-major axis or mean anomaly at the epoch, but also can raise the accuracy of numerical integration by several
orders. In particular, the new velocity scaling method as well as the method of Wu et al. is the most convenient in application.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is very clear that a difference of the Kepler energies in
a pure two-body problem causes Lyapunov’s instability of
the Keplerian orbit (Avdyushev, 2003). This must be nutri-
ent for cultivating various errors of a numerical solution.
Fortunately, Nacozy’s approach (1971) and Baumgarte’s
method (1973) seem to be best help in the struggle against
Lyapunov’s instability by suppressing the growth of the
energy error. The so-called stabilizing terms depending
on the energy integral are directly added to the numerical
solution for the former, while to the set of equations of
motion for the latter. Because the former is greatly superior
to the latter in some sense (Wu et al., 2006b; Wu and He,
2006), hereafter we focus mainly on Nacozy’s approach
and its extensions and applications in an n-body system.

For a perturbed Kepler problem or a system consisting
of multiple celestial bodies, the Kepler energy of each body

is no longer a constant. In this sense, the applicability of
Nacozy’s original method of manifold correction becomes
difficult. However, such correction approach of the Kepler
energy can still be implemented if an integral invariant rela-
tion (Szebehely and Bettis, 1971; Huang and Innanen,
1983) is employed. In detail, one can get a value of the
Kepler energy at every integration step by integrating the
time derivative of the Kepler energy and the equations of
motion simultaneously. Generally, this value of the Kepler
energy along this direction is of higher accuracy than one
from direct integration of the equations of motion. In other
words, it is regarded as to a more precise reference value of
energy stabilization. Noting this fact and according to the
constraints of a two-body problem, Liu and Liao (1988,
1994) proposed their scaling method, where two distinct
scale factors, a and b, are adopted to adjust the position
and velocity of a body, respectively. The two factors are
connected with the relation ab2 = 1. As we have known,
the scaling method is the first extension to Nacozy’s
approach. On the other hand, in the light of a circular orbit
integrated by Euler’s method Fukushima (2003) found that
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the integrated position and velocity should be used the
same scale factor, which satisfies a certain cubic equation
related the Kepler energy. As an illustration, it is necessary
to apply Newton’s method to solve the cubic equation such
that the scale factor can be determined. Fukushima’s
scaling method is another example of the extension of
Nacozy’s approach. Recently, Wu et al. (2007) gave a
brand-new direct extension of Nacozy’s approach. In their
method, only three components of the velocity vector are
corrected. Namely, it means that only a scale transforma-
tion to the velocity is considered. In this case, this correc-
tion scheme is also viewed as one of scaling methods. As
Wu et al. stated, the above three methods originate from
different correction paths to pull the numerical solution
of a trajectory back to the energy hypersurface on which
it should lie. The two scaling methods of Fukushima and
Liu and Liao bring the corrected solution to fall exactly
on the energy hypersurface along particular, but not the
shortest, directions. As far as the correction approach of
Wu et al. is concerned, it goes along the direction of the
steepest descent to the hypersurface, while the corrected
solution does not fall rigorously on the hypersurface. In
spite of these facts, all the three methods are almost effec-
tive in the sense of drastic improving the orbit precision
in some circumstances. For more information, see the arti-
cle of Wu et al. (2007).

The examples mentioned above have told us that there is
wide freedom in the path to the energy manifold. Really,
we find other single scaling methods that will become the
focus of attention in the present paper. In the new tech-
niques, we can only use a scale factor to the integrated
three-dimensional either velocity or position. It should be
pointed out that it is easier to get these scale factors in
our current schemes than to do ones of Fukushima’s idea
(2003). This paper is organized as follows. Section 2
describes two new single scaling methods in detail. Then
we shall roughly compare them with other existing correc-
tion methods, such as the method of Fukushima (2003) and
of Wu et al. (2007). For an in-depth exploration, in Section
3 we mainly check the numerical validity of these methods
by some test templates. Finally, the summary follows in
Section 4.

2. Several single scaling methods

At first, we use an integral invariant relation (Szebehely
and Bettis, 1971; Huang and Innanen, 1983) to determine a
reference value of Kepler energy at per integration step.
Then, we introduce two new single scaling methods with
corrections of the Kepler energy. Finally, the two methods
are roughly compared with the method of Fukushima
(2003) and of Wu et al. (2007).

2.1. Integral invariant relation

A perturbed one-body problem in the heliocentric coor-
dinate system has its equation of motion in the form

dv

dt
¼ � l

r3
rþ a; ð1Þ

where r, v, l ” G(M + m), r = jrj and a are the position,
velocity, gravitational constant, radius and perturbing
acceleration, respectively. The Kepler energy of this body
is defined as

K ¼ v2=2� l=r: ð2Þ
For the existence of the perturbation, K becomes a function
of time such that

dDK
dt
¼ v � a ð3Þ

with DK = K � K0, where K0 stands for the starting value
of the Kepler energy. Eq. (3) is called as an integral invari-
ant relation (Szebehely and Bettis, 1971; Huang and Inna-
nen, 1983) with respect to the Kepler energy.

From the analytical point of view, the value of K given
by Eq. (2) and one derived from Eq. (3) have no any differ-
ence. However, they differ greatly from the numerical point
of view. The reason is that the latter K deals with the mag-
nitude of the perturbation acceleration a, and should have
a more precision in numerical integration. For a further
illustration, we use a certain numerical scheme1 to integrate
Eq. (1) in order to get a numerical solution (rI, vI). Substi-
tuting the numerical solution into Eq. (2), we have the
value of K, labeled as KI. On the other hand, we adopt still
this integrator to work out Eqs. (1) and (3), and get the
value of K, marked as K*. As an emphasis, we would rather
integrate Eq. (3) than the equation dK/dt = v Æ a so that the
accumulation of round-off errors can be reduced signifi-
cantly (Fukushima, 1996). In terms of the statement above,
K* is closer to the actual value of the Kepler energy than
KI. Therefore, K* is regarded as to the reference value of
the Kepler energy. This gives a good chance to adjust the
numerical solution (rI,vI) to a more accurate solution
(r*,v*) so that the corrected KI is exactly equal to K*.
Now a problem is how to obtain (r*,v*) by means of known
K* and (rI,vI). In principle, there are infinite relations
between (rI,vI) and (r*,v*) which we are permitted to con-
struct. That is to say, there are many and many possible
manifold corrections of the Kepler energy. In particular,
scale transformations may be the simplest of various man-
ifold correction methods. The scaling methods of Liu and
Liao (1988, 1994) and Fukushima (2003) are some success-
ful examples. Without question, there should be other scal-
ing methods. We will deliver ourself of our findings in the
following.

2.2. New single scaling methods

Based on Eq. (2), K* and (r*,v*) should satisfy the
constraint

1 Here a symplect integrator (e.g. Wu et al., 2003), with the preservation
of symplectic structure and an integral of energy, should be excluded.
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