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a b s t r a c t

Gravitational lensing calculation using a direct inverse ray-shooting approach is a computationally
expensive way to determine magnification maps, caustic patterns, and light-curves (e.g. as a function
of source profile and size). However, as an easily parallelisable calculation, gravitational ray-shooting
can be accelerated using programmable graphics processing units (GPUs). We present our implementa-
tion of inverse ray-shooting for the NVIDIA G80 generation of graphics processors using the NVIDIA Com-
pute Unified Device Architecture (CUDA) software development kit. We also extend our code to multiple
GPU systems, including a 4-GPU NVIDIA S1070 Tesla unit. We achieve sustained processing performance
of 182 Gflop/s on a single GPU, and 1.28 Tflop/s using the Tesla unit. We demonstrate that billion-lens
microlensing simulations can be run on a single computer with a Tesla unit in timescales of order a
day without the use of a hierarchical tree-code.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Gravitational microlensing is the study of the deflection of light
by matter in a regime where high magnification and multiple-
imaging occurs, but the individual micro-images are not resolv-
able. This includes high magnification events due to lenses in the
Galactic bulge and halo (Alcock et al., 1993; Aubourg et al., 1993;
Udalski et al., 1993) and microlensing by compact objects within
macro-lenses at cosmological distances (Vanderriest et al., 1989;
Irwin et al., 1989). While Galactic microlensing projects have fo-
cused on searches for dark matter and the detection of planets, cos-
mological microlensing has led to advances in the understanding of
stellar mass functions, mean stellar masses, and the structure of
quasars, including constraints on the physical size of the emission
regions at different wavelengths. See Wambsganss (2006); Koch-
anek et al. (2007); Gould (2008) and Mao (2008) for recent reviews.

The standard signature of cosmological microlensing, especially
when applied to observations of active galactic nuclei, is an uncor-
related change in brightness of a single macro-image within a mul-
tiply-imaged system (Schneider and Weiss, 1987). Intrinsic

variation in source flux is seen as a correlated change in the bright-
ness of all the images, separated by the (macro)lensing time-delay.
Such observations require accurate light-curves to be obtained
over long time periods, in many cases decades, as there is a wide
variation in the time-delay: 2–30 h for the quadruple-lensed
Q2237+0305 (Vakulik et al., 2006) and 423 days for Q0957+561
(Hjorth et al., 2002) – see Saha et al. (2006) and Oguri (2007) for
further examples.

Determination of the source size, source intensity profile, and
physical properties of the microlenses (mass function, mean mass),
requires a statistical comparison between observed light-curves
and microlensing models. This is achieved through the use of the
gravitational lens equation:

y ¼ x� aðxÞ; ð1Þ

which relates the two-dimensional locations of a source, y, and an
image, x, with the deflection angle term, aðxÞ, dependent on the
arrangement of lenses. A common choice for microlensing is the
many-Schwarzschild lens model:

aðxÞ ¼
XN�
i¼1

mi
ðx� xiÞ
jx� xij2

ð2Þ

for N� lenses with masses, mi, at positions xi. The magnification, l,
due to a gravitational lens system is

l ¼ 1=det A ð3Þ
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where A ¼ @y=@x is the Jacobian matrix of Eq. (1), which measures
the areal distortion between the image and source planes.

While an image position maps uniquely to a source location
(x! y is a one-to-one mapping), the converse is not true (y! x
is a one-to-many mapping). Except for a limited number of special
cases [see Schneider et al. (1992) for examples], the lens equation
is not invertible. In the cosmological microlensing case, where
many millions of individual stars may contribute to the observed
magnification of a macro-image, it is more common to use a
numerical technique to solve for l over a finite region of the source
plane – a magnification map – rather than attempting to find all
image locations from Eq. (1) for a given source position (e.g. Pac-
zyński, 1986).

Inverse ray-shooting provides the most straightforward means
to obtain magnification maps for an arbitrary lens distribution
(see Kayser et al. (1986) and Schneider and Weiss (1986, 1987)
for early versions of this technique). Inverse ray-shooting follows
a large number (typically millions) of light rays backwards from
the observer, through the lens plane to the source plane, which is
represented as a pixellated grid. The number of light rays falling
in each pixel, Nij, compared to the (average) number if there was
no lensing, Nav, gives an estimate of the per-pixel magnification:

lij ¼ Nij=Nav ð4Þ

A typical magnification map is shown in Fig. 1, with the charac-
teristic pattern of caustics clearly visible. Caustics are regions of
high magnification – formally those points where det A ¼ 0. The
relative motion of the observer, lens plane and source imparts an
effective transverse velocity to the source, causing it to move
across the caustic network, and resulting in a time-varying change
in source brightness. Accordingly, a sample light curve is generated
by moving a source profile across a simulated caustic network, and
converting the magnification at each point to a magnitude change.

Statistical investigations of cosmological microlensing require
the generation of many sample light-curves, however, the creation
of magnification maps poses a significant computational challenge.
The time to calculate a magnification map is directly proportional
to the number of pixels in the source plane ðNpixÞ, the number of

microlenses ðN�Þ, and the number of floating point operations1

ðNflopÞ per deflection calculation. As a Monte Carlo technique, the
computation time is extended in direct proportion to Nav, which sets
the accuracy of calculated magnifications, and the number of repeat
(n) map generations. Long compute times – O(days-months) – limit
the scope to vary the input parameters, such as the initial stellar
mass function, mean stellar mass, and source grid resolution. To
keep computation times feasible for a direct implementation of the
inverse ray-shooting method, the product U ¼ n� Nflop � Npix�
N� � Nav historically has been constrained to K Oð1016Þ.

A number of approaches have been developed to overcome the
processing time problem. Wambsganss (1990, 1999) used a hierar-
chical tree-code (Barnes and Hut, 1986), where lenses are treated
differently depending on their distances from the light ray: lenses
at a similar distance from a ray are grouped together and replaced
with a single pseudo-lens of higher mass, effectively reducing the
N� factor. This introduces a slight error in the magnification map,
which can be reduced by including higher order moments of the
mass distribution. A parallel version of the tree-code, suitable for
running billion-lens calculations on a parallel computing cluster
– a region of parameter size previously unavailable to microlensing
codes – has been implemented by Garsden and Lewis (submitted
for publication).

Mediavilla et al. (2006) used a lattice of polygonal cells to map
areas of the image plane to source plane pixels, rather than using a
regular grid in the source plane. This greatly reduces Nav, resulting
in a �100� speed-up to reach a given accuracy compared to stan-
dard inverse ray-shooting, however, preparing an appropriate
polygonal lattice introduces a significant computation overhead.

A limitation of Monte Carlo-style methods is that many more
magnification values, Npix, are constructed than may actually be re-
quired (e.g. to form a single light curve). A slightly larger (angular)
size must be used for the image plane than for the source plane, as
light rays at large impact parameters can be deflected into the
source plane, contributing flux that would otherwise be lost. Con-
sequently, more light rays must be generated than will actually fall
within the source grid. Additionally, the finite source grid resolu-
tion means that true point source magnifications cannot be accu-
rately calculated. To avoid these issues, Lewis et al. (1993) and
Witt (1993) independently developed approaches based on imag-
ing an infinite line in the source plane, which maps to a continuous,
infinite line in the image plane, plus a number of closed loops – one
for each microlens. Wyithe and Webster (1999) developed this
technique further for extended sources.

In this work, we demonstrate that the redeployment of the di-
rect inverse ray-shooting algorithm on modern, programmable
graphics processing units (GPUs) can dramatically speed-up the
calculation of microlensing magnification maps, without the pro-
gramming overheads of implementing a more complex code. GPUs
are macroscopic semiconductor arrays designed to accelerate the
rendering of three-dimensional geometry for display on two-
dimensional computer screens. Most modern computers contain
a GPU, either on the system board or on a peripheral graphics card,
which now regularly provide at least an order of magnitude greater
raw computational power than the central processing unit (CPU).
Rendering on-screen pixels is a highly parallel task, and this is re-
flected in the GPU architecture. Modern GPUs are primarily com-
posed of stream processors, which are individual arithmetic logic
units (ALUs) grouped in sets and controlled by an instruction
scheduler with associated shared memory. Consequently, algo-
rithms that lend themselves to the ‘‘stream processing” paradigm,
where many individual data-streams all undergo identical opera-

Fig. 1. A sample microlensing magnification map generated with a pair of NVIDIA
GeForce 8800GT graphics cards. For model parameters: N� ¼ 100 lenses,
Npix ¼ 10242 pixels in the source plane, and Nav ¼ 1000 light rays per source pixel
(on average), the processing time was 135 s. See Section 2 for details.

1 We use the notation: flop = floating point operation; 1 Gflop/s = 1 Gigaflop per
second; and 1 Tflop/s = 1 Teraflop per second.
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