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a b s t r a c t

Material flows are typical features of prominences and are routinely observed in Ha, UV and EUV lines.
Therefore, including a magnetic field-aligned background flow, we study the effect of flows on the damp-
ing of non-adiabatic magnetohydrodynamic (MHD) waves in a magnetised unbounded prominence med-
ium, and we explore the observational implications. We have linearised the non-adiabatic MHD
equations and, considering only field-aligned propagation, we focus our study in the behaviour of thermal
and slow waves. When a flow with a constant speed is present, two slow waves, with different periods,
appear, while the damping time remains unchanged. On the other hand, the thermal wave becomes in
this case a propagating wave, with finite period, while its damping time remains also unmodified. As a
consequence of the changes in the periods produced by the flow, the damping per period of the different
waves is modified. In the case of slow waves, and for a fixed flow speed, the damping per period of the
high-period slow wave is increased while the opposite happens for the low-period slow wave, and the
strongest finite damping per period, for the high-period slow wave, is obtained for flow speeds close
to the non-adiabatic sound speed. In the case of the thermal wave, a finite value for the damping per per-
iod is obtained for any non-zero flow speed, and in this case the strongest finite damping per period is
obtained for values of the flow speed close to zero. Furthermore, we point out that there is the possibility
to have slow and thermal waves having the same period, the same damping time, or both simultaneously,
which makes the proper identification of the waves for an external observer extremely difficult. Then, if
flows are ubiquitous in prominences the observational determinations of periods and damping per per-
iod, made by an external observer, include its effect, and for a proper identification, information about the
wavelength, flow speed and perturbations should be needed, which constitutes a truly difficult observa-
tional task.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Flows seem to be an ubiquitous feature in prominences and fil-
aments and are routinely observed in Ha, UV and EUV lines. In Ha
quiescent filaments typical velocities between 5 and 20 km/s are
found (Zirker et al., 1998; Lin et al., 2003, 2007) and, due to
physical conditions in prominence plasma, they seem to be field-
aligned. Higher velocities have been also reported in the case of ac-
tive filaments. Another interesting feature observed in filament
flows is counterstreaming, which consists in simultaneous flowing
in opposite directions within closely spaced adjacent threads
(Zirker et al., 1998).

On the other hand, the presence of small-amplitude oscillations
in quiescent prominences has been widely reported (Ballester,

2006; Banerjee et al., 2007) and, up to now, only the time damping
of these oscillations has been determined unambiguously from
observations. Reliable values for the damping time, sD, have been
derived, from different Doppler velocity time series, by
Molowny-Horas et al. (1999) and Terradas et al. (2002), in promi-
nences, and by Lin (2004), in filaments. The values of sD thus ob-
tained are usually between 1 and 4 times the corresponding
period, and large regions of the prominence/filament display sim-
ilar damping times. Furthermore, some determinations about the
wavelengths of the MHD waves, probably responsible for promi-
nences/filament oscillations, have been obtained. For instance,
Molowny-Horas et al. (1997) determined a maximum value of
20,000 km, while Terradas et al. (2002) obtained values of
67,500, 50,000 and 44,000 km. Also, Lin et al. (2007) have deter-
mined the wavelength of oscillations in filament threads obtaining
a value of about 3000 km.

Small-amplitude oscillations in quiescent prominences have
been interpreted in terms of MHD waves (Oliver and Ballester,
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2002; Ballester, 2006) and explanations for the time damping of
prominence oscillations based on linear non-adiabatic MHD waves
have been proposed (Carbonell et al., 2004; Terradas et al., 2001,
2005; Soler et al., 2007).

Taking into account the presence of flows and time damped
oscillations in prominences/filaments, our main aim here is to in-
clude a background flow in the prominence medium and to explore
the theoretical and observational effects produced by its presence
on the time damping of non-adiabatic MHD waves. The layout of
the paper is as follows: in Section 2, the equilibrium model and
some theoretical considerations are presented; in Section 3, the
main results are discussed; finally, in Section 4, conclusions are
drawn.

2. Basic equations and theoretical considerations

2.1. Linearised equations

As a background model, we use a homogeneous unbounded
medium threaded by a uniform magnetic field along the x-direc-
tion, and with a field-aligned background flow. The equilibrium
magnitudes of the medium are given by

p0 ¼ const:; q0 ¼ const:; T0 ¼ const:;
B0 ¼ B0êx; v0 ¼ v0êx;

with B0 = constant and v0 = constant. The effect of gravity has been
ignored and the basic MHD equations for the discussion of non-adi-
abatic MHD waves are:

Dq
Dt
þ qr � v ¼ 0; ð1Þ

q
Dv
Dt
¼ �rpþ 1

l
ðr � BÞ � Bþ qg; ð2Þ

qT
Ds
Dt
þ qLðq; TÞ � r � ðj � rTÞ ¼ 0; ð3Þ

oB
ot
¼ r� ðv� BÞ; ð4Þ

r � B ¼ 0; ð5Þ

p ¼ qRT
~l

; ð6Þ

where D
Dt ¼ o

ot þ v � r is the material derivative for time variations
following the motion. In Eq. (3), the term r � ðj � rTÞ represents
the thermal conduction, although in our case perpendicular thermal
conduction has been neglected, and L is the heat-loss function
which depends on the local plasma parameters. In the case of an
equilibrium with uniform temperature, such as we consider here,
the heat-loss function is

Lðq0; T0Þ ¼ 0:

Usually, in solar applications this function represents the difference
between an arbitrary heat input and a radiative loss function which,
in our case, has been chosen as the optically thin radiative loss func-
tion (Hildner, 1974). Then, our heat-loss function is given by

Lðq; TÞ ¼ v�qTa � hqaTb; ð7Þ

v� and a being piecewise functions depending on the temperature
(Hildner, 1974). The use of an optically thin plasma radiative cool-
ing seems to be a reasonable approach for coronal, or almost coro-
nal, conditions, while it may not be valid for prominence conditions
because they are optically thick. In this case, the radiative losses
from the internal part of the prominence are greatly reduced and
this can be represented by changing the exponent a in the cooling
function, for temperatures T 6 104 K, from a ¼ 7:4 to 17:4 (Milne
et al., 1979) or a ¼ 30 (Rosner et al., 1978), as well as by changing

v� accordingly (Carbonell et al., 2004). Finally, the last term in Eq.
(7) represents an arbitrary heating function which can be modified
by taking different values for the exponents a and b. In our case, dif-
ferent heating scenarios have been considered, and the values taken
into account for exponents a and b in Eq. (7) are (Rosner et al., 1978;
Dahlburg and Mariska, 1988)

(1) Constant heating per unit volume (a ¼ b ¼ 0).
(2) Constant heating per unit mass (a ¼ 1,b ¼ 0).
(3) Heating by coronal current disipation (a ¼ 1,b ¼ 1).
(4) Heating by Alfvén mode/mode conversion (a ¼ b ¼ 7=6).
(5) Heating by Alfvén mode/anomalous conduction damping

(a ¼ 1=2,b ¼ �1=2).

Considering small perturbations from the equilibrium in the
form

Bðt; rÞ ¼ B0 þ B1ðt; rÞ; pðt; rÞ ¼ p0 þ p1ðt; rÞ;
qðt; rÞ ¼ q0 þ q1ðt; rÞ; Tðt; rÞ ¼ T0 þ T1ðt; rÞ;
vðt; rÞ ¼ v0 þ v1ðt; rÞ;

we linearise the basic equations (1)–(6) to obtain

o
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T0
¼ 0; ð13Þ

where jk ¼ 10�11T5=2, and c2
s ¼

cp0
q0

, is the adiabatic sound speed
squared. In the above linearised equations, the important difference
with respect to the non-adiabatic case without flow is the operator
o
ot þ v0 � r (Goedbloed and Poedts, 2004). Since the medium is un-
bounded we can perform a Fourier analysis in plane waves and as-
sume perturbations behaving like eiðxt�k�rÞ, and with no loss of
generality we choose the z-axis so that the wavevector k lies in
the xz-plane, so that

k ¼ kxêx þ kzêz:

Then, the above operator becomes iðx� kxv0Þ, which points out
that in the presence of a background flow the frequency suffers a
Doppler shift given by kxv0 and that the wave frequency, x, for
the non-adiabatic case with flow can be obtained from

x ¼ Xþ kxv0; ð14Þ

X being the wave frequency for the non-adiabatic case without
flow. On the other hand, these frequencies can be described in a dif-
ferent manner, X corresponds to the frequency measured by an ob-
server linked to the flow rest frame, while x would correspond to
the frequency measured by an observer linked to an external iner-
tial rest frame.

Then, the following scalar equations are obtained:

Xq1 � q0ðkxvx þ kzvzÞ ¼ 0; ð15Þ
Xq0vx � kxp1 ¼ 0; ð16Þ
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