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a b s t r a c t

We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive
mesh refinement on Graphics Processing Units using NVIDIA’s CUDA. We show that a class of high res-
olution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines
approach with the second order total variation diminishing Runge–Kutta time integration scheme, piece-
wise linear reconstruction, and a Harten–Lax–van Leer Riemann solver, we achieve an overall speedup of
approximately 10 times faster execution on one graphics card as compared to a single core on the host
computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies.
Our framework can readily be applied to more general systems of conservation laws and extended to
higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydro-
dynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined
our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is
observed on up to four GPUs.

� 2009 Published by Elsevier B.V.

1. Introduction

Graphics Processing Units (GPUs) are specialized for math-
intensive highly parallel computation, thus more transistors are
devoted to data processing rather than data caching and flow con-
trol like in CPU. So the potential tremendous performance of gen-
eral non-graphics computations on GPUs has recently motivated a
lot of research activities on general-purpose GPU (GPGPU) comput-
ing (see e.g. Owens et al., 2007, for a review).

NVIDIA introduced the Tesla unified graphics and computing
architecture in November 2006. The Tesla architecture is built
around a scalable array of multithreaded streaming multiproces-
sors (SM). A SM consists of eight streaming processor (SP) cores.
The Tesla SM uses a new processor architecture called single-
instruction, multiple-thread (SIMT). The SIMT unit creates, man-
ages and executes up to 768 concurrent threads in hardware with
zero scheduling overhead. The SM also implements barrier syn-
chronization intrinsic with a single instruction. The fast barrier syn-
chronization, together with lightweight thread creation and zero-
overhead thread scheduling support very fine-grained parallelism
allowing thousands and even millions of threads to be invoked in
kernel calls to achieve highly scalable parallel programming.

High performance supercomputing has been important in mod-
ern astrophysical research since it became available. Simulations
allow astronomers to perform ‘‘experiments” on astronomical ob-

jects, collide stars, galaxies, or model the entire visible Universe;
all situations are clearly impossible to recreate in a terrestrial lab-
oratory. Studying the formation of stars, black holes and galaxies in
the Universe is particularly challenging computationally. Their for-
mation involves the nonlinear interplay of a range of physical pro-
cesses including gravity, turbulence, magnetic field, shocks,
radiation, chemistry, etc. Those questions motivated the astro-
physical community to develop robust and efficient fluid codes
with all the relevant physics.

Studies involving astrophysical fluid dynamics in general are
benefitting tremendously from using spatial and temporal adap-
tive mesh refinement (AMR). This is especially so in the studies
of structure formation. For example, the radius of a star is eight or-
ders of magnitude smaller than the size of a molecular cloud. A
uniform grid code is hopeless. On the other hand, the AMR tech-
nique has been demonstrated to work well in resolving the large
dynamical range involved in those problems (e.g. Abel et al.,
2002; Wang and Abel, 2009).

The mapping of computational fluid algorithms to GPU however
is still at an early stage of development. Harris et al. (2003) per-
formed cloud simulations using Stam’s method (Stam, 1999). This
method is also used by Liu et al. (2004) for 3D flow calculations.
Using finite difference methods, Brandvik and Pullan (2008) solved
uniform grid 3D Euler equations, Elsen et al. (2008) solved 3D Euler
equations on a multi-block meshes and Zink (2008) solved
Einstein’s equation with uniform grid. As far as we are aware of,
this work is the first on mapping an adaptive mesh finite volume
solver to GPU.
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2. CUDA

In 2007, NVIDIA released CUDA for GPU computing as a lan-
guage extension to C (see NVIDIA, 2009 for a comprehensive intro-
duction to CUDA programming). CUDA makes GPU computing
application development much easier and more efficient than ear-
lier attempts to GPGPU using various shading languages which
need to translate the computation to a graphics language.

CUDA’s parallelization model is based on abstraction of the Ge-
Force 8-series hardware. It allows programmer to define kernels
which can be executed in parallel by many threads on GPU.
Threads are organized into 1D, 2D or 3D thread blocks while blocks
are organized into 1D or 2D grids. Each thread can access its thread
and block indices by two built-in variables threadIdx and blockIdx.
Fig. 1 shows how this CUDA threads/blocks/grids hierarchy map to
the GPU hardware. As discussed above, a 8-series GPU has an array
of SMs. Each SM is composed of eight SP. In CUDA, each thread is
executed on a single SP while each block is executed on a single
SM. The whole grid of blocks is mapped to the GPU. At current gen-
eration of architecture, only a single kernel can run on the GPU at a
given time. Because a block is mapped to a single SM, synchroniza-
tion is possible within a block. Currently, global synchronization
between blocks is impossible.

The SM’s SIMT unit creates, manages, schedules and executes
threads in groups of 32 parallel threads called warps. The threads

in a warp always execute a common instruction at a time, but dif-
ferent warps execute independently. As a result, different warps
can execute on different branches. This is an enormous improve-
ment for branching code compared to previous-generation GPUs
as the 32-thread warps are much narrower than the SIMD (sin-
gle-instruction multiple-data) width of prior GPUs. However, if
threads of a warp diverge via a conditional branch, different execu-
tion path have to be serialized, increaing the total number of
instructions executed for this warp. This means that if a code
branches within a warp, then the total number of instructions to
get the job done will be increased and as a result the execution
time will be increased. So branching inside a warp should still be
minimized to achieve good efficiency. However, there is no penalty
if different warps branch to different pathes. Thus, the ideal situa-
tion is to organize the branching conditions such that each warp
follows the same path.

CUDA exposes the hardware memory hierarchy by allowing
threads to access data from multiple memory spaces. All threads
have access to the same global memory. Each thread block has a
shared memory visible to all threads of the block and with the same
lifetime as the block. Each thread has a private local memory and a
set of registers. There are also two additional read-only memories
accessible by all threads: the constant and texture memory.

The shared memory is much smaller than global memory,
typically 16 kB, but it is on-chip so it has very high register-level

Fig. 1. The mapping of CUDA thread hierarchy to GPU hardware.
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