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a b s t r a c t

We derive the universal solution to the Kepler–Coulomb problem with an additional inverse-square
potential, valid for any type of orbit, and describe three prominent applications in astrodynamics: the rel-
ativistic precession of the apsides, the numerical integration of perturbed Kepler–Coulomb problems
with a generalized leapfrog, and the averaged motion of earth-orbiting satellites with the J2 perturbation.
The modified orbital elements and Delaunay variables are presented as well.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the class of dynamical systems with central force fields, the
Kepler–Coulomb problem is perhaps the most famous. The Kep-
ler–Coulomb problem in three-dimensional Euclidean space is re-
lated to the harmonic oscillator in four dimensions through the
Kustaanheimo–Stiefel transformation (Kustaanheimo and Stiefel,
1965), or the Duru–Kleinert transformation (Duru and Kleinert,
1979), as it is known in the context of atomic path integrals, which
linearizes and regularizes the equations of motion. In celestial
mechanics, the solution of the Kepler–Coulomb problem is often
written in terms of a universal variable based on the Sundman
transformation; the solution is valid irrespective of the orbit type.

The Hamilton–Jacobi equation for the Kepler–Coulomb problem
is known to be separable in four coordinate systems only: spheri-
cal, parabolic, elliptic and spheroconical (Cordani, 2003). Adding a
generic perturbation generally destroys the integrability and sym-
metry of the original system. However, McIntosh and Cisneros
(1970), and Zwanziger (1968), who focussed solely on its quantum
mechanical implications, discovered that the added potential of a
self-dual Dirac (magnetic) monopole preserves the symmetries of
the Kepler–Coulomb problem, and hence that it remains integra-
ble. The MICZ problem has been solved formally by Bates (1988)

using Souriau’s regularization technique (see e.g. Cordani, 2003,
Chapter 5). Although Bates’ solution is simple and elegant, it lacks
a clear physical interpretation; third-order derivatives of the coor-
dinates with respect to the (reparameterized) time are required.

In this paper, we review the classical MICZ problem from a uni-
versal variable point of view, as outlined previously by Caballero
and Elipe (2001), and we address its relevance to astrodynamics.
In Section 2, we briefly review the symmetries of the classical MICZ
problem in relation to the Kepler–Coulomb problem. The similari-
ties between these systems enable us to write down an analytical
solution that is valid for any type of orbit, as shown in Section 3.
Following Deprit (1981), the MICZ problem is commonly denomi-
nated in astrodynamical literature quasi-Keplerian for reasons that
will become apparent below. Section 4 comprises a discussion of
the quasi-Keplerian orbital elements and Delaunay variables, from
which other orbital representations may be obtained. Three appli-
cations are described in detail in Section 5. These include the
in-plane precession of Keplerian orbits due to the lowest-order
correction due to the general theory of relativity; the numerical
integration of perturbed Kepler–Coulomb systems by means of
time transformations that split the total Hamiltonian into the qua-
si-Keplerian Hamiltonian and the perturbation; and the secular J2

effect, which is relevant to all satellites and spacecraft in low orbits
around an oblate primary, such as the Earth. We have endeavoured
to maintain the discussion general, so that our results can be ap-
plied to related physical systems, such as for example Rydberg
atoms in the presence of magnetic monopoles.
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2. MICZ problem

The Hamiltonian of the McIntosh–Cisneros–Zwanziger (MICZ)
system is

H q;pð Þ ¼ 1
2

p2 � k
q
þ l2

2q2 ; ð1Þ

where k 2 R, p and q are the canonical momenta and coordinates,
respectively, and p ¼ jpj and q ¼ jqj, the standard Euclidean ð‘2Þ
norm. The monopole potential is actually derived from a vector po-
tential A, such that the magnetic field B ¼ r^ A ¼ lq=q3 for
q 2 R3 n f0g. This in turn means that in going from the Kepler–Cou-
lomb to the MICZ problem, the canonical momenta are transformed
through a minimal substitution: p # p� A. The parameter l can be
viewed as a deformation parameter; for l ¼ 0 one recovers the
well-known Kepler–Coulomb problem. The associated one-parame-
ter family of differential equations is Hamiltonian at each value of l,
as shown by Bates (1988). These Hamiltonian deformations are dis-
tinct for different values of the deformation parameter. We shall re-
quire that l2 2 R in order to allow for both positive and negative
(real) values.

The phase space of the classical MICZ problem (1), THðR3 n f0gÞ,
is endowed with the Poisson structure

fqi; qjg ¼ 0; fpi; qjg ¼ dij; fpi;pjg ¼ �l
X3

k¼1

�ijkqk=q3; ð2Þ

and the herewith related canonical two-form

x ¼
X3

i;j¼1

dij dpi ^ dqj �
l

2q3

X3

i;j;k¼1

�ijkqi dqj ^ dqk: ð3Þ

The first term in Eq. (3) is simply the symplectic two-form of the
Kepler–Coulomb system. The additional dynamics due to the mono-
pole potential are incorporated in the second term. Physically, l is
the magnetic ‘charge’ of the monopole. Mathematically, the defor-
mation parameter can be interpreted as the De Rham cohomology
class of the symplectic form.

Since the Hamiltonian function is independent of time, it is a
conserved quantity. A simple calculation reveals that because of
rotational invariance,

J ¼ q ^ p� lq
q

ð4Þ

is conserved as well. In analogy with the Kepler–Coulomb problem,
there is an additional conserved quantity:

R ¼ 1ffiffiffiffiffiffiffiffiffi
2jHj

p p ^ J � q
q

� �
; ð5Þ

which corresponds to the Laplace–Runge–Lenz vector. Under the
Poisson bracket the Laplace–Runge–Lenz vector yields the soð4Þ
algebra for H < 0, that is, the Lie algebra of the four-dimensional
rotation group, and soð3;1Þ for H > 0, which is the Lie algebra of
the conformal group in four-dimensions. These are the same sym-
metries of the Kepler–Coulomb problem. In fact,

J;q=qð Þ ¼ �l; ð6Þ

which shows that the solutions to Hamilton’s equations for Eq. (1)
are conic sections, where the opening angle # ¼ arccosl=J. Simi-
larly, we have that

p ^ J;qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 j H j

p
R;qð Þ � q ¼ J2 � l2; ð7Þ

so that the motion lies in the plane.

3. Universal solution

Because the motion is planar, it is convenient to use polar coor-
dinates q ¼ ðr; hÞ in the orbital plane:

H ¼ 1
2

p2
r þ

p2
h

r2

� �
� k

r
þ l2

2r2 : ð8Þ

The time evolution of the system is encoded in Hamilton’s
equations:

_qk ¼
oH
opk

; _pk ¼ �
oH
oqk

; ð9Þ

where the overdot represents the derivative with respect to the
time t. In polar coordinates, Hamilton’s equations for the Hamilto-
nian (8) simply read

_r ¼ pr; _pr ¼
p2

h þ l2

r3 � k
r2 ; ð10Þ

_h ¼ ph

r2 ;
_ph ¼ 0: ð11Þ

It is customary to reparameterize the time t with a so-called Sund-
man transformation

dt ¼ r ds: ð12Þ

Let the prime ð0Þ denote the derivative with respect to the indepen-
dent (universal) variable s, that is, f 0ðsÞ ¼ df ðsÞ=ds ¼ r _f ðtÞ for any
f 2 C1ðR;RÞ by virtue of the chain rule and the transformation
(12). Therefore, we find that

r00 ¼ ðrprÞ
0

¼ r
d rprð Þ

dt

¼ r p2
r þ

p2
h þ l2

r2 � k
r

� �
: ð13Þ

Since the Hamiltonian is constant, we have the identity

2H0 � p2
r þ

p2
h þ l2

r2 � 2k
r

� �
¼ 0; ð14Þ

where H0 is the initial (numerical) value of the Hamiltonian. Now,
we can add this expression to the bracketed expression of Eq. (13)
and obtain

r00 ¼ 2H0r þ k: ð15Þ

Hence, we arrive at the set of differential equations:

r00 ¼ 2H0r þ k;

h0 ¼ ph=r;
t0 ¼ r;

8><
>: ð16Þ

which are to be supplied with initial conditions. The deformation
parameter l does not appear explicitly in these equations; it only
resides in the value H0. Let r0, r00 and r000 denote the initial values
of r, r0 ¼ ðq;pÞ and r00 ¼ 2H0r þ k, respectively. The system (16) is
then easily solved in terms of Stumpff functions by

rðsÞ ¼ r0 þ r00sc1 �2H0s2
� �

þ r000s2c2 �2H0s2
� �

;

hðsÞ ¼ phnðsÞ;
tðsÞ ¼ r0sþ r00s2c2 �2H0s2

� �
þ r000s3c3 �2H0s2

� �
;

8><
>: ð17Þ

where we have defined

nðsÞ ¼
Z s

0

du
rðuÞ : ð18Þ

Using the universal Stumpff functions and the definition b ¼ �2H0,
the solution to rðsÞ and tðsÞ may be written more concisely as
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