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a b s t r a c t

The theory of the Clausius’ Virial maximum to explain the fundamental plane (FP) proposed by Secco
[Secco, L., 2000. NewA, 5, 403; Secco, L. 2001. NewA, 6, 339; Secco, L. 2005. NewA, 10, 439] is based on
the existence of a maximum in the Clausius’ Virial (CV) potential energy of a early type galaxy (ETG) stel-
lar component when it is completely embedded inside a dark matter (DM) halo. At the first order approx-
imation the theory was developed by modeling the two-components with two cored power-law density
profiles. An higher level of approximation is now taken into account by developing the same theory when
the stellar component is modeled by a King-model with a cut-off. Even if the DM halo density remains a
cored power-law the inner component is now more realistic for the ETGs. The new formulation allows us
to understand more deeply what is the dynamical reason of the FP tilt and in general how the CV theory
may really be the engine to produce the FP main features. The degeneracy of FP in respect to the initial
density perturbation spectrum may be now full understood in a CDM cosmological scenario. A possible
way to compare the FPs predicted by the theory with those obtained by observations is also exemplified.

� 2009 Elsevier B.V. All rights reserved.

1. On the tilt

It is well known that galaxies of different morphological types
cluster around the fundamental plane (FP) (Dressler et al., 1987;
Djorgovski and Davis, 1987; Faber et al., 1987; Bender et al.,
1992; Djorgovski and Santiago, 1993; Renzini and Ciotti, 1993; Cio-
tti et al., 1996; Jørgensen, 1999; see, e.g., the review of D’Onofrio
et al. (2006), and the references therein) in the three dimensional
space of: re, effective radius; Ie, the mean effective surface bright-
ness within re; ro, the central projected velocity dispersion. On
the basis of homology + virial theorem one would expect that the
FP equation has to be: re � rA

o IB
e where A ¼ 2, B ¼ �1. That results

completely in disagreement with the observations in different
bands. Typical values in B-band are: A ¼ 1:33� 0:05;
B ¼ �0:83� 0:03 (e.g., in D’Onofrio et al. (2006)). These unex-
pected values produce in the j coordinate system (Bender et al.,
1992) the so called tilt that is an increasing of the ratio: dynamical
mass Mdyn over luminosity L, of this kind:

Mdyn=L � ðMdynÞ0:2 ð1Þ

Many attempts have been done in order to understand the FP tilt
which is also one of the common features either for galaxy FPs or
for the FPs of all virialized structures which all together define
the so called cosmic meta-plane (Burstein et al., 1997). The review
of D’Onofrio et al. (2006) may help the reader to take into account

the more recent efforts to solve the hard problem of finding an
explanation of the trend (1) when the K-band is also considered
and then the population effect has to be ruled out. Actually it is pos-
sible to explain the trend observed in the B-band as a metallicity se-
quence of an old stellar population (Maraston, 1999). However the
Mdyn=L values in the K-band are independent of metallicity even if
the tilt is observed (Pahre et al., 1998). A secondary effect is then
needed to explain the K-band tilt (Gerhard et al., 2001).

The Clausius’ Virial theory (TCV) of FP has the aim to propose a
dynamical mechanism able to produce the required effect on a
huge range of mass scales from globular clusters to galaxy clusters.
The purpose is to prove that it may be possible to change A, B expo-
nents (from the expected values 2, �1) without breaking homol-
ogy + virial equilibrium. It is based on the existence of a special
virial configuration characterized by a maximum in the Clausius’
Virial potential energy (CV) which, on galaxy mass scale, refers to
a baryonic (stellar, B) component when it is completely embedded
inside a DM halo (D component). At the first order approximation
(linear) the two-components are modeled with two power-law
density profiles and two infinitesimal cores. The general strategy
is described in many papers (Secco, 2000, 2001, hereafter LS1, Mar-
mo and Secco, 2003; Secco, 2005, hereafter LS5).

Now we move from a linear approach of TCV to a non-linear one
that is to an higher level of approximation in which the stellar
component is built up by a King-model with a cut-off. Even if the
DM halo density remains a power-law the inner component is
actually more realistic for the ETGs. The new formulation allows
us to understand more deeply the physical reasons which produce
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the FP tilt and the role of the main involved quantities, particularly
that of Ie. Moreover we may begin the comparison between the ex-
pected edge-on FPs with those obtained by observations (e.g. that
of Djorgovski and Davies (1987)) and try to reproduce in j-space
the tilt fit-equation of Burstein et al. (1997). Its theoretical deriva-
tion may explain why the FP is degenerate in respect to the initial
density perturbation spectrum in a CDM scenario as already under-
lined by Djorgovski (1992). Some initial examples of theoretical FP
calibration will be given in Sections 7 and 9, for some special choice
of theoretical parameters. A more complete discussion is still in
progress.

2. General strategy of TCV

Briefly summarizing, the general strategy consists to use the
two-component tensor virial theorem (e.g. Brosche et al., 1983;
Caimmi and Secco, 1992) to describe the virial configuration of
the baryonic component embedded in a DM halo at the end of
relaxation phase (see Bindoni and Secco, 2008). It reads:

2ðTuÞij ¼ ðVuÞij ðu ¼ B;D; i; j ¼ x; y; zÞ ð2Þ

According to the scalar virial for one component, the potential en-
ergy tensor, which has to enter into the tensor virial equations, is
the Clausius’ Virial tensor, ðVuÞij, built-up of the self-potential energy
tensor, ðXuÞij, and the tidal potential energy tensor, ðVuvÞij. Then,
according to the scalar virial theorem, the trace of CV tensor, in
the case of stellar component, has to be read:

VB ¼ XB þ VBD

XB ¼
Z

qB

X3

r¼1

xr
oUB

oxr
d~xB ¼

Z
qBð~rB �~f BÞd~xB

ðVBDÞ ¼
Z

qB

X3

r¼1

xr
oUD

oxr
d~xB ¼

Z
qBð~rB �~f DÞd~xB

ð3Þ

where qB is the B component density and ~f B;
~f D are the force per

unit mass due to the self and DM gravity, respectively, at the point
~rB and UB, UD are the respective potentials.

Conversely, the total potential energy tensor of the B compo-
nent is: ðXBÞij þ ðWBDÞij, where the interaction energy tensor is:
ðWBDÞij ¼ � 1

2

R
qBðUDÞij d~xB; and the potential tensor due to the

DM (e.g., Chandrasekhar, 1969) is: ðUDÞij ¼ G
R
qDð~x0Þ

3 ðxi�x0
i
Þðxj�x0

j
Þ

j~x� ~x0 j3
d~xD.

To be noted that in general: ðVBDÞij – ðWBDÞij, the difference
gives the residual energy tensor (Caimmi and Secco, 1992).

We will describe a re-formulation of TCV in the case in which
the two-component model is built up of: a bright B stellar compo-
nent with a King (1962) truncated density profile completely
embedded in a DM frozen halo, D, with a cored power-law mass
density distribution.

3. Why introducing King’s model

3.1. End of relaxation phase

The violent relaxation mechanism leads to an equipartition of
energy per unit mass and not per particles (see, e.g., the review
of Bindoni and Secco (2008), and references therein). If r is the
velocity dispersion, assumed to be the same for every star mass,
integration of the distribution function, f ðEÞ, over the velocities
(Binney and Tremaine, 1987, Chapter 4; Combes et al., 1995, Chap-
ter 4), yields the density:

qðrÞ ¼ q1e�UðrÞ=r2 ð4Þ

where the total energy per unit mass is: E ¼ ð1=2Þv2 þ U; (v and U
are velocity and potential energy per unit mass, respectively). On
the other hand, Poisson equation:

1
r2

d
dr

r2 dU
dr

� �
¼ 4pG

Z
f ðEÞd~v ð5Þ

becomes by means of Eq. (4):

d
dr

r2 d lnq
dr

� �
¼ �4pG

r2 r2q ð6Þ

with the solution:

qðrÞ ¼ r2

2pGr2 ð7Þ

In turn, Eq. (4) gives:

2 ln
3ffiffiffi
2
p r

rc

� �
¼ UðrÞ=r2 ð8Þ

when a core radius rc ¼ 3rð4pGqoÞ
�1=2 is introduced in order to

avoid an infinite value of the central density qo. rc corresponds to
the radius at which the projected density of the isothermal sphere
falls to roughly half of its central value. Eq. (8) gives us the asymp-
totic behavior as soon as r is greater of about 2rc:

UðrÞ � 2r2 lnðr=rcÞ ð9Þ

which means again from Eq. (4), an isothermal behavior, qðrÞ / r�2

as r !1.

3.2. Problems with isothermals

The isothermal energy distribution function extends spatially to
infinity with infinite mass and so does not be suitable to represent
a real elliptical galaxy.

Since 1965, Ogorodnikov has highlighted that: in order to find
the most probable phase distribution function for a stellar system
in a stationary state, the phase volume has to be truncated in both
coordinate and velocity space. While in the velocity space the trun-
cation arises spontaneously due to the existence of escape velocity,
the introduction of a cut-off in the coordinate space appears, on
one side, necessary in order to obtain a finite mass M and radius
R, but, on the other, very problematic.

A similar difficulty also appears on the thermodynamical side,
for which an extensive literature exists (from: Lynden-Bell and
Wood, 1968; Horowitz and Katz, 1978; White and Narayan,
1987, until, e.g., Bertin and Trenti, 2003, and references therein).
By using the standard Boltzmann–Gibbs entropy:

S ¼ �
Z

f ln f d3xd3v ð10Þ

defined by the distribution function, f ð~x;~vÞ (hereafter DF), in the l
phase-space, and looking for what maximizes the entropy of the
same stellar system, the conclusion is: the DF which plays this role
in (10) is that of the isothermal sphere. But, the maximization of S,
subject to fixed mass M and energy E, leads again to a DF that is
incompatible with finite M and E (see, e.g., Binney and Tremaine,
1987, Chapter 4; Merritt, 1999; Lima Neto et al., 1999; Marquez
et al., 2001, and references therein).

Our limited contribution to the wide discussion existing in the
literature will be to underline as in a stellar component, embedded
in a second dark matter subsystem (e.g., Ciotti, 1999, and refer-
ences therein), a truncation is spontaneously introduced in coordi-
nate space, due to the presence of a scale length induced from the
dark halo, as long as virial equilibrium holds. That is the tidal radius
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