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a b s t r a c t

We consider the double pulsar PSR J0737-3039A/B binary system as a laboratory to locally test the orbital
effects induced by an uniform cosmological constant K in the framework of the known general relativistic
laws of gravity, and the DGP braneworld model of gravity independently of the cosmological acceleration
itself for which they were introduced. We, first, construct the ratio R ¼ D _x=DP of the discrepancies
between the phenomenologically determined periastron rate _x and orbital period Pb and their predicted
values from the 1PN _x1PN approximation and the third Kepler law Pð0Þ. Then, we compare its value
jRj ¼ ð0:3� 4Þ � 10�11 s�2, compatible with zero within the errors, to the ratios RK and RDGP of the effects
induced on the apsidal rate and the orbital period by K and the DGP gravity; we find them neatly incom-
patible with R being RK ¼ ð3:4� 0:3Þ � 10�8 s�2 and RDGP ¼ ð1:4� 0:1Þ � 10�7 s�2, respectively. Such a
result, which for the case of K is valid also for any other Hooke-like exotic force proportional to r, is in
agreement with other negative local tests recently performed in the Solar System with the ratios of
the non-Newtonian/Einsteinian perihelion precessions for several pairs of planets.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Since, at present, the only reason why the cosmological con-
stant1 K is believed to be non-zero relies upon the observed acceler-
ation of the universe (Riess et al., 1998; Perlmutter et al., 1999), i.e.
just the phenomenon for which K was introduced (again), it is
important to find independent observational tests of the existence
of such an exotic component of the spacetime.

In this paper we wish to put on the test the hypothesis that
K–0, where K is the uniform cosmological constant of the
Schwarzschild-de Sitter ( Stuchlík and Hledík, 1999) (or Kottler
(Kottler, 1918)) spacetime, by suitably using the latest determina-
tions of the parameters (see Table 1) of the double pulsar PSR
J0737-3039A/B system (Burgay et al., 2003). The approach fol-
lowed here consists in deriving analytical expressions OK for the ef-
fects induced by K on some quantities for which empirical values
Omeas determined from fitting the timing data exist. By taking into
account the known classical and relativistic effects Oknown affecting

such quantities, the discrepancy DO ¼ Omeas � Oknown is constructed
and attributed to the action of K, which was not modelled in the
pulsar data processing. Having some DO and OK at hand, a suitable
combination C, valid just for the case K–0, is constructed out of
them in order to compare Cmeas to CK: if the hypothesis K–0 is cor-
rect, they must be equal within the errors. Here we will use the
anomalistic period Pb and the periastron precession _x for which
purely phenomenological determinations exist in such a way that
our C is the ratio of D _x to DPb; as we will see, this observable is
independent of K but, at the same time, it retains a functional
dependence on the system’s parameters peculiar to the K-induced
force and of any other Hooke-like forces.

This work complements (Iorio, 2008) in which a similar test was
conducted in the Solar System by means of the latest determina-
tions of the secular precessions of the longitudes of the perihelia
of several planets. The result of Iorio (2008) was negative for the
Schwarzschild-de Sitter spacetime with uniform K; as we will see,
the same conclusion will be traced out of this paper in Section 2.1.

A complementary approach to explain the cosmic acceleration
without resorting to dark energy was followed by Dvali, Gabadadze
and Porrati (DGP) in their braneworld modified model of gravity
(Dvali et al., 2000). Among other things, it predicts effects which
could be tested on a local, astronomical scale. In (Iorio, 2008) a
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1 See Calder and Lahav (2008) and references therein for an interesting historical
overview.
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negative test in the Solar System was reported; as we will see in
Section 3, PSR J0737-3039A/B confirms such a negative outcome
at a much more stringent level.

The conclusions are in Section 4.

2. The effect of on the periastron and the orbital period

The Schwarzschild-de Sitter metric induces an extra-accelera-
tion2 (Rindler, 2001)

AK ¼
1
3

Kc2r; ð1Þ

where c is the speed of light; eq. (1) in view of the extreme small-
ness of the assumed non-zero value cosmological constant
ðK � 10�52 m�2Þ, can be treated perturbatively with the standard
techniques of celestial mechanics. In (Kerr et al., 2003) the secular
precession of the pericentre of a test particle around a central body
of mass M was found to be

_xK ¼
Kc2

2nð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

; ð2Þ

where

nð0Þ ¼
ffiffiffiffiffiffiffiffi
GM

a3

r
ð3Þ

is the Keplerian mean motion; a and e are the semi-major axis and
the eccentricity, respectively, of the test particle’s orbit. Concerning
a binary system, in (Jetzer and Sereno, 2006) it was shown that the
equations for the relative motion are those of a test particle in a
Schwarzschild-de Sitter space–time with a source mass equal to
the total mass of the two-body system, i.e. M ¼ mA þmB. Thus,
Eq. (2) is valid in our case; a is the semi-major axis of the relative
orbit.

Following the approach by Jetzer and Sereno, 2006, we will now
compute PK, i.e. the contribution of K to the orbital period. One of
the six Keplerian orbital elements in terms of which it is possible to
parameterize the orbital motion in a binary system is the mean
anomaly M defined as M � nðt � T0Þ, where n is the mean motion
and T0 is the time of pericenter passage. The mean motion
n � 2p=Pb is inversely proportional to the time elapsed between
two consecutive crossings of the pericenter, i.e. the anomalistic
period Pb. In Newtonian mechanics, for two point-like bodies, n re-
duces to the usual Keplerian expression nð0Þ ¼ 2p=Pð0Þ. In many bin-
ary systems, as in the double pulsar one, the period Pb is accurately
determined in a phenomenological, model-independent way, so
that it accounts, in principle, for all the dynamical features of the
system, not only those coming from the Newtonian point-like
terms, within the measurement precision.

The Gauss equation for the variation of the mean anomaly, in
the case of an entirely radial disturbing acceleration A like Eq.
(1), is

dM
dt
¼ n� 2

na
A

r
a

� �
þ ð1� e2Þ

nae
A cos f ; ð4Þ

where f is the true anomaly, reckoned from the pericenter. Using
the eccentric anomaly E, defined as

M ¼ E� e sin E; ð5Þ

turns out to be more convenient. The unperturbed Keplerian ellipse,
on which the right-hand-side of Eq. (4) must be evaluated, is

r ¼ að1� e cos EÞ; ð6Þ

by using Eq. (1) and

dM
dE ¼ 1� e cos E;

cos f ¼ cos E�e
1�e cos E ;

(
ð7Þ

Eq. (4) becomes

dE
dt
¼ nð0Þ

ð1� ecosEÞ 1� Kc2

3nð0Þ2
2ð1� ecosEÞ2�ð1� e2Þ

e
ðcosE� eÞ

� �� �
:

ð8Þ

Since Kc2=3nð0Þ2 � 10�29 from Eq. (8) it can be obtained

Pb ’
Z 2p

0

ð1� e cos EÞ
nð0Þ

1þ Kc2

3nð0Þ2
2ð1� e cos EÞ2
h�

�ð1� e2Þ
e

ðcos E� eÞ
��

dE; ð9Þ

which integrated yields that

Pb ¼ Pð0Þ þ PK ð10Þ

with

PK ¼
pKc2ð7þ 3e2Þ

3nð0Þ3
: ð11Þ

2.1. Combining the periastron and the orbital period

The general relativistic expressions of the post-Keplerian
parameters r; s and _x are

r ¼ T�mB;

s ¼ xA
Pb
2p

� ��2=3
T�1=3
� M2=3m�1

B ;

_x1PN ¼ 3
ð1�e2Þ

Pb
2p

� ��5=3
ðT�MÞ2=3

;

8>>>><
>>>>:

ð12Þ

where

T� ¼
GM�

c3 ð13Þ

and M ¼ mA þmB in units of solar masses. By means of

a ¼ c
s
ðxA þ xBÞ ð14Þ

Table 1
Relevant Keplerian and post-Keplerian parameters of the binary system PSR J0737-3039A/B (Kramer et al., 2006)

Pb (d) xA (s) xB (s) e _x (deg year�1) s r (ls)

0.10225156248(5) 1.415032(1) 1.5161(16) 0.0877775(9) 16.89947(68) 0.99974(39) 6.21(33)

The orbital period Pb is measured with a precision of 4� 10�6 s. The projected semi-major axis is defined as x ¼ ðabc=cÞ sin i, where abc is the barycentric semi-major axis, c is
the speed of light and i is the angle between the plane of the sky, perpendicular to the line-of-sight, and the orbital plane. The eccentricity is e. The best determined post-
Keplerian parameter is, to date, the periastron rate _x of the component A. The phenomenologically determined post-Keplerian parameter s, related to the general relativistic
Shapiro time delay, is equal to sin i; we have conservatively quoted the largest error in s reported in (Kramer et al., 2006). The other post-Keplerian parameter related to the
Shapiro delay, which is used in the text, is r.

2 The present test is valid for all exotic Hooke-type forces of the form Cr (Calder and
Lahav, 2008), with C arbitrary non-zero constant.
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