

Available online at www.sciencedirect.com

New Astronomy 11 (2006) 495-502

New Astronomy

www.elsevier.com/locate/newast

Search for $1_{11}-1_{10}$ and $2_{11}-2_{12}$ transitions of H₂CCO, H₂CCC and H₂CCCC in cosmic objects

S. Chandra¹, P.G. Musrif^{*}, R.M. Dharmkare, Monika Sharma

School of Physical Sciences, S.R.T.M. University, Nanded 431 606, Maharashtra, India

Received 16 September 2005; received in revised form 20 December 2005; accepted 2 January 2006 Available online 25 January 2006 Communicated by F.D. Macchetto

Abstract

Formaldehyde (H₂CO) is the first molecule observed in absorption against the cosmic microwave background (CMB) through its transition $1_{11}-1_{10}$ at 4.829 GHz in several cosmic objects. The second line observed in a large number of cosmic objects is $2_{11}-2_{20}$ transition at 21.59 GHz of cyclopropenylidene (*c*-C₃H₂) in absorption against the CMB. The phenomenon of anomalous absorption can take place under rather peculiar conditions developed in a molecule generating the line. In the present investigation, for H₂CCO, H₂CCC and H₂CCCC in cool cosmic objects, we have accounted for kinetic temperature of 10, 20, 30 and 40 K. For each of these three molecules, we have taken 30 rotational energy levels connected by 66 radiative transitions and solved the set of statistical equilibrium equations coupled with equations of radiative transfer through iterative method. We found that relative values of collisional rates can produce anomalous absorption of transitions $1_{11}-1_{10}$ and $2_{11}-2_{12}$ in these molecules. Anomalous absorption of $1_{11}-1_{10}$ and $2_{11}-2_{12}$ transitions may help in the identification of molecules in cool cosmic objects.

© 2006 Elsevier B.V. All rights reserved.

PACS: 95.30.Ft; 95.30.Jx; 95.30.Ky

Keywords: Interstellar molecules – H₂CCO, H₂CCC, H₂CCCC; Molecular processes and interactions; Radiative transfer; Molecular data and transition probabilities

1. Introduction

Transitiion 1_{11} – 1_{10} at 4.829 GHz of formaldehyde has been observed in anomalous absorption against CMB in several directions (Palmer et al., 1969). Since the energy level scheme and relative values of radiative transition probabilities for transitions between the levels in H₂CCO, H₂CCC and H₂CCCC are very similar to those for H₂CO (Table 1), in the present investigation we have discussed about the phenomenon of anomalous absorption of transitions 1_{11} – 1_{10} and 2_{11} – 2_{12} in these molecules. It has been found that a mechanism responsible for anomalous absorption depends on relative values of collisional rate coefficients. To get anomalous absorption in $1_{11}-1_{10}$ transition, the rate coefficient for $1_{10} \rightarrow 2_{12}$ transition should be larger than that for $1_{11} \rightarrow 2_{11}$ transition. It is possible to get anomalous absorption in $2_{11}-2_{12}$ transition.

2. Observations

Ketene (H₂CCO) is detected in Sgr B2, TMC-1 and L134N by Turner et al. (1977), Matthews and Sears (1986), Irvine et al. (1989), Ohishi et al. (1991) through its transitions 4_{14} - 3_{13} , 4_{04} - 3_{03} , 4_{13} - 3_{12} , 5_{15} - 4_{14} , 5_{05} - 4_{04} , 5_{14} - 4_{13} , 1_{01} - 0_{00} , 2_{02} - 1_{01} , 2_{12} - 1_{11} and 2_{11} - 1_{10} . Molecular and distortional constants for this molecule are taken from Johns and Stone (1972) and are given in Table 2.

^{*} Corresponding author. Tel.: +91 9850401409.

E-mail addresses: sch@iucaa.ernet.in (S. Chandra), musrif_pramod@ yahoo.com (P.G. Musrif).

¹ Visiting Associate, Inter-University Centre for Astronomy and Astrophysics, Pune 411 007, India.

^{1384-1076/\$ -} see front matter \odot 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.newast.2006.01.001

Table 1 Energy in cm^{-1} of rotational levels of ortho species and electric dipole moment

$J_{k_ak_c}$	H ₂ CCO	H ₂ CCC	H ₂ CCCC
1 ₁₁	9.6705	9.9723	9.6365
110	9.6831	9.9851	9.6390
212	11.0061	11.3465	10.2299
211	11.0438	11.3850	10.2374
313	13.0094	13.4079	11.1199
312	13.0849	13.4849	11.1349
414	15.6805	16.1563	12.3067
4 ₁₃	15.8063	16.2846	12.3316
515	19.0192	19.5917	13.7901
5 ₁₄	19.2081	19.7842	13.8274
6 ₁₆	23.0257	23.7142	15.5701
615	23.2901	23.9837	15.6225
717	27.6999	28.5236	17.6469
716	28.0523	28.8829	17.7166
818	33.0416	34.0200	20.0203
817	33.4948	34.4820	20.1100
9 ₁₉	39.0509	40.2032	22.6669
9 ₁₈	39.6174	40.7804	22.7790
101,10	45.7278	47.0732	25.6770
10 ₁₉	46.4202	47.7791	25.8103
3 ₃₁	85.0676	87.6697	85.8459
3 ₃₀	85.0676	87.6697	85.8459
4 ₃₂	87.7629	90.4427	87.0374
4 ₃₁	87.7629	90.4427	87.0374
5 ₃₃	91.1319	93.9090	88.5267
5 ₃₂	91.1319	93.9090	88.5267
6 ₃₄	95.1748	98.0685	90.3138
633	95.1748	98.0685	90.3138
7 ₃₅	99.8915	102.9211	92.3988
7 ₃₄	99.8915	102.9211	92.3988
μ (Debye)	1.41	4.1	4.5

Table 2

Molecular and distortional constants in MHz

Constants	H ₂ CCO ^a	H_2CCC^b	H_2CCCC^c
A	282,081	288,783	284,468
В	10,293.9772	10,588.639	4503.309
С	9915.2396	10,203.966	4428.616
D_J	3.394×10^{-3}	4.248×10^{-3}	0.5393×10^{-3}
D_{JK}	476.04×10^{-3}	516.4×10^{-3}	144.0×10^{-3}
D_K	23.535	23.535	0.0000
d_1	0.1453×10^{-3}	-0.153×10^{-3}	-0.0157×10^{-3}
H_{JK}	8.4×10^{-6}	7.6×10^{-6}	0.14×10^{-6}
H_{KJ}	-0.7103×10^{-3}	-1.28×10^{-3}	0.35×10^{-3}

^a Johns and Stone (1972).

^b Vrtilek et al. (1990).

^c Killian et al. (1990).

Propadienylidene (H₂CCC) is detected by Cernicharo et al. (1991a), Kawaguchi et al. (1991) in IRC +10216 and TMC-1 through its transitions 1_{01} - 0_{00} , 5_{15} - 4_{14} , 5_{14} - 4_{13} , 7_{16} - 6_{15} , 2_{12} - 1_{11} , 2_{02} - 1_{01} , 2_{11} - 1_{10} , 4_{14} - 3_{13} and 4_{13} - 3_{12} . Molecular and distortional constants for this molecule are taken from Vrtilek et al. (1990) and are given in Table 2.

Carbene (H_2 CCCC) is detected by Cernicharo et al. (1991b), Kawaguchi et al. (1991) in IRC +10216 and TMC-1 through its transitions $9_{09}-8_{08}$, $10_{1,10}-9_{19}$, $11_{1,11}-10_{1,10}$, $11_{0,11}-10_{0,10}$, $11_{1,10}-10_{1,9}$, $12_{0,12}-11_{0,11}$, $12_{1,11}-10_{1,10}$, $12_{0,12}-11_{0,11}$, $12_{1,11}-10_{1,10}-10_{1,10}$, $12_{1,11}-10_{1,10}-$

 $11_{1,10}$, $15_{1,15}-14_{1,14}$, $15_{1,14}-14_{1,13}$, $16_{1,16}-15_{1,15}$, $2_{12}-1_{11}$, $2_{02}-1_{01}$, $2_{11}-1_{10}$, $4_{14}-3_{13}$, $4_{04}-3_{03}$, $4_{13}-3_{12}$, $5_{15}-4_{14}$, $5_{05}-4_{04}$ and $5_{14}-4_{13}$. Molecular and distortional constants for this molecule are taken from Killian et al. (1990) and are given in Table 2.

3. Basic formulation

The transitions of our interest, 1_{11} - 1_{10} and 2_{11} - 2_{12} , belong to the ortho species of each molecule. In our investigation, NLTE occupation numbers of 30 energy levels for each molecule are calculated in an on-the-spot approximation by using the escape probability method (Rauch et al., 1996; Chandra et al., 2005) where the external radiation field, impinging on a volume element generating lines, is the CMB only. In the present investigation, we solved a set of 30 simultaneous equations coupled with 66 equations of radiative transfer. This system of equations is non-linear and can be solved through iterative method for given values of hydrogen density $n_{\rm H_2}$ and $\gamma \equiv n_{\rm mol}/(dv_{\rm r}/dr)$, where $n_{\rm mol}$ is density of molecule and $dv_{\rm r}/dr$, the velocity gradient in cosmic object. Basic data required in this investigation are Einstein A-coefficients for radiative transitions and collisional rate coefficients between the levels.

4. Einstein A-coefficients

Treatment of an asymmetric top molecule is quite complicated as it has no preferential direction for quantization and the energy matrix is non-diagonal. Rotational wave functions for an asymmetric top molecule can be described by a linear combination of wave functions for a symmetric top molecule (Chandra et al., 1984)

$$\Psi_{J\tau M}(\alpha,\beta,\gamma) = \sqrt{\frac{2J+1}{8\pi^2}} \sum_{K=-J}^{J} g_{\tau K}^{J} D_{MK}^{J}(\alpha,\beta,\gamma)$$

where α , β , γ are Euler angles specifying orientation of the molecule, *J* the rotational quantum number, $g_{\tau K}^{J}$ the expansion coefficients, D_{MK}^{J} the Wigner D-function and the pseudo quantum number τ is defined as

$$\tau = k_a - k_c$$

where k_a and k_c are projections of J on the axis of symmetry in case of prolate and oblate symmetric tops, respectively. Rotational levels in an asymmetric top molecule are specified as J_{k_a,k_c} or J_{τ} . All the three molecules, H₂CCO, H₂CCC and H₂CCCC being *a*-type asymmetric top, the rotational radiative transitions are governed by selection rules

$$J: \quad \Delta J = 0, \pm 1$$

$$k_a, k_c: \text{ even, odd } \leftrightarrow \text{ even, even}$$

$$\text{odd, even } \leftrightarrow \text{ odd, odd.}$$

In the representation where the axis of quantization is along *a*-axis of inertia, Einstein *A*-coefficient for transition $J'_{\tau'} \rightarrow J_{\tau}$ is given by Chandra and Sahu (1993), Chandra and Rashmi (1998) Download English Version:

https://daneshyari.com/en/article/1779870

Download Persian Version:

https://daneshyari.com/article/1779870

Daneshyari.com