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a b s t r a c t

In General Relativity, the constraint equation relating metric and density perturbations is inherently
nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales—even if
the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter
overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not
correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the
galaxy bias when using the simplest model of bias. It is an open question whether the observable mass
proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo
bias model. If not, there may be observables that encode this relativistic signature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In Newtonian gravity, the Poisson equation is a linear relation
between the gravitational potential and thematter overdensity. By
contrast, in General Relativity (GR) this is replaced by a nonlinear
relation, which introducesmode coupling between large and small
scales [1–3]. The original result has been confirmed by a number
of independent calculations [4–9]. Similar mode coupling can be
produced in Newtonian gravity by local-type primordial non-
Gaussianity of the gravitational potential [10,11]. The GR effect has
therefore previously been interpreted as an effective local non-
Gaussianity on very large scales [6,12–15].

Recently two papers have argued that a ‘‘separate universe’’
approach can be used to show that no scale-dependent bias
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arises from the GR corrections on large scales [16,17]. The
argument is that the nonlinear coupling between long-wavelength
perturbations on a scale λL, and the small-scale variance, σ 2

S =

⟨δ2
S ⟩, on a scale λS , vanishes under a local coordinate rescaling and

hence is unobservable.
The separate universe approach [18,19] has proved to be a pow-

erful tool to understand the origin of large-scale structure, and pri-
mordial non-Gaussianity, from inflation. Accelerated expansion in
the very early Universe stretches initial small-scale vacuum fluc-
tuations up to scales much larger than the Hubble scale at the end
of inflation. Spatial gradients for such long-wavelength modes be-
come small relative to the local Hubble time, and for many scales
of interest, the perturbed universe can be treated as a patchwork
of ‘‘separate universes’’, each locally obeying the classical Fried-
mann–Lemaître–Robertson–Walker (FLRW) evolution of an un-
perturbed universe.

The separate universe approach is particularly useful for
studying nonlinear perturbations on large scales [18,20]. For
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Fig. 1. Schematic of the various scales in (2).

adiabatic perturbations, each separate universe patch follows
locally the same evolution as the unperturbed ‘‘background’’
cosmology. The only difference between separate patches is
the local expansion, characterised by the comoving metric
perturbation ζ . This is defined to be the local perturbation of
the integrated expansion rate with respect to a background flat
reference cosmology, δN = N − N̄ , where N =


dt Θ/3.

An important consequence of the uniqueness of the local
evolution for adiabatic perturbations is that ζ is conserved on large
scales where the separate universe approach is valid [19,21,22].

In each patch, the comoving spatial line element is (see [17])

ds2(3) = e2ζ δijdxidxj . (1)
There is a global background which must be defined with respect
to some scale λ0, at least as large as all the other scales of
interest, i.e., at least as large as our presently observable Universe.
It is important to distinguish this from the scale of the separate
universe patches, λP . This is large enough for each patch to be
treated as locally homogeneous and isotropic, but patches must be
stitched together to describe the long-wavelength perturbations
on a scale λL ≫ λP . Thus, following [19], we require a hierarchy of
scales (see Fig. 1):
λ0 > λL ≫ λP ≫ λS . (2)

The local observer in a separate universe patch cannot observe
the effect of ζL, which is locally homogeneous on the patch scaleλP .
However, local coordinates can be defined only locally and the long
mode curvature perturbation is observable through a mapping
from local to global coordinates.

2. The physical effect of curvature within the observable
universe

In Newtonian gravity the only constraint on initial conditions is
the Poisson equation, which provides a linear relation between the
overdensity and the gravitational potential at all orders

∇
2ΦN = −

3
2
a2H2δ . (3)

Thus if the initial Newtonian potential ΦN is Gaussian, then so is
the initial density field δ. In GR, the nonlinear energy constraint
equation for irrotational dust is [23]

2
3
Θ2

− 2σ 2
+ R(3)

= 16πGρ + 2Λ , (4)

where ρ is the comoving matter density, Λ is the cosmological
constant, Θ = ∇µuµ is the expansion rate of the matter 4-
velocity, σ is its shear, and R(3) is the Ricci curvature scalar of the 3-
dimensional space orthogonal to uµ. At first order in perturbations
about an FLRW cosmology, the energy constraint combines with
the momentum constraint to give the relativistic version of the
Poisson equation (3), where ΦN is replaced by Φ , i.e. the spatial
metric perturbation in longitudinal gauge, and δ is the synchronous
comoving gauge density contrast. Note that Φ = 3ζ/5 at first
order. At second order, at the start of the matter era, using the
relation between R(3) and ζ , we obtain [6]

∇
2ζ − 2ζ∇

2ζ +
1
2

(∇ζ )2 = −
5
2
a2H2δ . (5)

Consider a Gaussian distribution of ζ . We separate ζ and δ into
independent long- and short-wavelength modes, ζ = ζL + ζS
and δ = δL + δS , where the wavelength of the long modes λL
obeys (2); in particular, λL ≫ λP . To leading order in ζS and ζL,
and neglecting gradients of ζL relative to those of ζS , the initial
constraint (5) implies ∇

2ζL = −5a2H2δL/2 and

∇
2ζS − 2ζL∇2ζS = −

5
2
a2H2δS . (6)

The second term on the left represents the long–short mode
coupling.

Within a local patch on a scale λP , it is possible to redefine the
background spatial coordinates to absorb the effects of the long-
wavelength perturbations ζL, following [17]:

x̃i = xi + ξ i, ξ i
= ζLxi. (7)

If we neglect gradients of the long mode, this transformation
eliminates ζL from the spatial metric (1)

ds2(3) = e2ζLe2ζS δijdxidxj = e2ζS δijdx̃idx̃j. (8)

This transformation holds for each single patch (see Fig. 1).
Since this is a purely spatial coordinate transformation, the

curvature and density perturbations transform as scalars,

ζ̃S(x̃) = ζS(x), δ̃S(x̃) = δS(x), where x̃ =

1 + ζL(x)


x . (9)

The constraint equation (6) becomes

∇̃
2ζ̃S(x̃) = −

5
2
a2H2δ̃S(x̃). (10)

Thus in the new local coordinates, in one patch of sizeλP , we have a
linear Poisson equation and the long–shortmode coupling appears
to be absent. This confirms the fact that the local observer in a
separate universe patch cannot observe the effect of the locally
homogeneous perturbation ζL, as argued in [16,17].

The original coordinates xi define a global chart, which is
essential for defining random fields such as ζL on large scales,
and the long mode curvature perturbation enters through the
mapping from local to global coordinates. Indeed, a coordinate
transformation that depends on a random field is not a new
concept in large-scale structure. The situation here is reminiscent
of the redshift-space distortion map, where the random field is
given by the peculiar velocities (which are in turn generated by
large-scale density perturbations). Because of the nonlinear nature
of this map, an initially Gaussian field in real space becomes non-
Gaussian in redshift space [24,25].

As shown in [17], ζ̃ (x̃) and δ̃(x̃) are Gaussian fields with respect
to the local coordinates x̃i. By (9), δ̃(x̃) = δ(x) and so we recover a
non-Gaussian distribution for the density field with respect to the
global coordinates, xi. See Fig. 2 for a schematic illustration of this.
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