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a b s t r a c t

We consider a model of modified gravity from the nonperturbative quantization of a metric. We obtain
the modified gravitational field equations and the modified conservational equations. We apply it to
the FLRW spacetime and find that due to the quantum fluctuations a bounce universe can be obtained
and a decelerated expansion can also possibly be obtained in a dark energy dominated epoch. We also
discuss the effects of quantum fluctuations on inflation parameters (such as slow-roll parameters, spectral
index, and the spectrum of the primordial curvature perturbation) and find values of parameters in the
comparing the predictions of inflation can also work to drive the current epoch of acceleration.We obtain
the constraints on the parameter of the theory from the observation of the big bang nucleosynthesis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A great number of astronomical observations have confirmed
that the Universe is experiencing an accelerated expansion. In the
framework of general relativity an unknown energy component,
dubbed as dark energy, is usually introduced to explain this
phenomenon. The simplest candidate of dark energy is the vacuum
energy with a constant equation of state (EoS) parameterw = −1.
This model is consistent with most of the current astronomical
observations, but it suffers from the cosmological constant
problem [1] and age problem [2] as well. Therefore it is natural
to consider more complicated cases. The most popular attempt
is to propose modifications of the Einstein–Hilbert Lagrangian by
adopting different functions of the Ricci scalar, known as f (R)
theories, which have been studied extensively [3–7]. However, the
fourth order field equations in f (R) theories make it is hard to
analyze. Analogous to f (R) theories, a new scenario based on the
modification of the teleparallel gravity, called f (T ) theory, was
proposed to explain the accelerated expansion of the Universe [8,
9]. Recently, it has been shown that one can obtain modified
gravity from Heisenberg’s nonperturbative quantization [10–12].
According to this technique, the classical fields appearing in the
corresponding field equation are replaced by operators of the
fields. Think of general relativity, we have the operator Einstein
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equations

Ĝµν ≡ R̂µν −
1
2
ĝµν R̂ = k2T̂µν, (1)

where k2 = 8πG and we take c = 1. All geometric operators, such
as Γ̂ a

bc , R̂
a
bcd, and R̂ab, are defined in the sameway as in the classical

case by replacing the classical quantities with the corresponding
operators [10]. Heisenberg’s technique offers one possibility to
solve this operator equation by average it over all possible products
of the metric operator ĝ(x1), . . . , ĝ(xn) which can be written as an
infinite set of equations for all Green’s functions:

⟨Q |ĝ(x1) · Ĝµν |Q ⟩ = k2⟨Q |ĝ(x1) · T̂µν |Q ⟩, (2)
. . . = . . . , (3)

⟨Q |ĝ(x1) · ... · ĝ(xn) · Ĝµν |Q ⟩

= k2⟨Q |ĝ(x1) · ... · ĝ(xn) · T̂µν |Q ⟩, (4)

where |Q ⟩ is a quantum state [10,11]. This set of equations cannot
be solved analytically. Some proximate methods to solve them
were discussed in Refs [10,13], for example, one can decompose
the metric operator into a sum of an average metric gµν and a
fluctuating part δgµν [10].

ĝµν = gµν + δgµν . (5)

Assuming ⟨δĝµν⟩ ≠ 0 and ignoring high order fluctuations, we
expand the Einstein–Hilbert Lagrangian Lĝ =

1
2k2


−ĝ R̂ in the
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following manner

Lĝ = Lĝ(g + δĝ) ≈ Lg(g) +
δLg
δgµν

δgµν
. (6)

The expectation value of δLg
δgµν

δgµν
can be represented as

δLg
δgµν

δgµν


=
δLg

δgµν ⟨δgµν
⟩ =

√
−gGµν⟨

δgµν
⟩ [10]. Then the ex-

pectation value of Lagrangian (6) has the form

⟨Lĝ⟩ ≈
1
2k2

√
−g


R + Gµν⟨δĝµν

⟩

. (7)

Similarly, we can expand the quantum Lagrange density Lĝm as
follows

Lĝm(g + δĝ) ≈
√

−gLm(g) +
δ
√

−gLm
δgµν

δgµν
. (8)

With the aforementioned assumptions, the expectation value of
the quantum Lagrange density (8) takes the form [10]

⟨Lĝm(g + δĝ)⟩ ≈
√

−g

Lm +

1
2
Tµν⟨δĝµν

⟩


. (9)

Therefore the modified Lagrangian density can be written as (for
details, see Refs. [10,11])

L =
1
2k2

√
−g


R + Gµν⟨δĝµν

⟩

+

√
−g


Lm +

1
2
Tµν⟨δĝµν

⟩


. (10)

In this paper,wewill consider the simplest case: ⟨δgµν
⟩ = αgµν

and derive the equation of motion. Then we will investigate the
effects of quantum fluctuations of metric on the evolution of the
universe. Obviously, if |α| ≪ 1, the modified Lagrangian density
(10) approximates to the Hilbert–Einstein Lagrangian density,
namely themodel ofmodified gravity proposed here approximates
to general relativity. In order to adequately analyze the effects
of quantum fluctuations on the universe, or in other words, to
take seriously the way to modify gravity from the nonperturbative
quantization of a metric [10], we will consider all possible values
the parameter α can take.

The paper is outlined as follows. In next section, we will
present the modified gravitational field equations and the
modified conservational equations. In Section 3, effects of quantum
fluctuations on the universe are discussed. Finally, we will briefly
summarize and discuss our results in Section 4.

2. Modified gravitational field equations

For Lagrangian density (10), since ⟨δĝµν⟩ has the same
symmetry as the metric gµν , the simplest case is ⟨δĝµν

⟩ = αgµν ,
which was suggested in [10]. Therefore Lagrangian density (10)
takes the form

L = Lmg + Lmm =
1
2k2

√
−g(1 − α)R +

√
−g


Lm −

1
2
αT


, (11)

where T = gµνTµν with Tµν = −2δ(
√

−gLm)/(
√

−gδgµν).
Lagrangian density (11) may can be rewritten as a special type of
f (R, T ) gravity phenomenologically proposed in [14], but here we
obtain it basing on theoretical considerations and for the first time
discuss it in detail. In general, comparing with the classical part
of the metric, quantum fluctuations are small (|α| < 1), such as
in radiation, matter, or dark energy dominated era; however, it is
possible that quantum fluctuations are large (|α| > 0) when the
system we consider closes to the Planck scale, such as in the very

early epoch. Varying Lagrangian density (10) with respect to gµν

and assuming δgµν = 0 on the boundary, we obtain

δLmg =
1
2k2

(1 − α)


Rµν −

1
2
gµνR


δgµν, (12)

δ(
√

−gLm) = −
1
2
Tµν

√
−gδgµν, (13)

and

δ(
√

−gT ) = Tδ
√

−g +
√

−gδT

= −
1
2
gµνT

√
−gδgµν

+
√

−g(Tµν + θµν)δgµν, (14)

where δT/δgµν
= Tµν + θµν with θµν = gαβδTαβ/δgµν . Assuming

that the Lagrangian density Lm of matter depends only on the
metric tensor component gµν , not on its derivative, one can easily
get Tµν = gµνLm − 2∂Lm/∂gµν and

δTαβ

δgµν
= −gαλgβσ δλσ

µν Lm +
1
2
gµνgαβLm −

1
2
Tµνgαβ

− 2
∂2Lm

∂gαβ∂gµν
, (15)

where δλσ
µν = δgλσ /δgµν . Then we have

θµν = gµνLm − 2Tµν − 2gαβ ∂2Lm
∂gαβ∂gµν

. (16)

For different matter, θµν takes different form. From Eqs. (12)–(14),
we obtain the gravitational field equations

Rµν −
1
2
gµνR =

2k2

1 − α


1
2
(1 + α)Tµν −

1
4
αgµνT +

1
2
αθµν


. (17)

We can seen that the gravitational constant G and the en-
ergy–momentum tensor are modified due to the quantum fluctu-
ation of the metric. Because R = −k2[T + αθ/(1 − α)], the gravi-
tational field equations (17) can be rewritten as

Rµν =
2k2

1 − α


1
2
(1 + α)Tµν −

1
4
gµνT +

1
2
αθµν −

1
4
αgµνθ


.

(18)

Taking into account the covariant divergence of Einstein tensor
∇νGµν

= 0, we get for the divergence of the stress–energy tensor
Tµν the equation

∇
νTµν =

1
1 + α


1
2
α∇µT − α∇

νθµν


. (19)

In other words, if we take into account of quantum fluctuations,
the stress–energy tensor are not conserved quantities any more.
Discussions on the nonconservation of stress–energy tensor can be
found in [15–18]. Obviously, for small α, the effects of quantum
fluctuations are weak, Lagrangian density (10) approximates to
the Hilbert–Einstein Lagrangian density. In order to adequately
investigate the effects of quantum fluctuations of metric on the
universe, see, for example, for a α ∼ 1, the effects of quantum
fluctuations can even approximatively counteract the gravity, it is
worth considering all possible values the parameterα can take.We
will discuss this topic in detail in the following sections.
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