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a b s t r a c t

In an accelerating universe in General Relativity there is a maximum radius above which a shell of
test particles cannot collapse, but is dispersed by the cosmic expansion. This radius could be used in
conjunction with observations of large structures to constrain the equation of state of the universe. We
extend the concept of turnaround radius to modified theories of gravity for which the gravitational slip is
non-vanishing.
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1. Introduction

Since 1998 cosmologists and theoretical physicists have been
trying to explain the present acceleration of the universe discov-
ered with type Ia supernovae. Apart from the problematic cosmo-
logical constant, explanations based on a dark energy introduced
ad hoc (see [1] for a review) are not satisfactory and many re-
searchers have turned to contemplating the possibility of modi-
fying gravity at large scales ([2], see [3–7] for reviews). Although
modifying gravity is a viable possibility, too many dark energy and
modified gravity models fit the observational data and it is impor-
tant to use any test of gravity which may become available, at all
scales, to obtain hints on the correct explanation of the cosmic ac-
celeration and, possibly, on the correct theory of gravity.

One possibility which has been pointed out recently is testing
theoretical predictions of the turnaround radius with astronomi-
cal observations [8–25]. In an accelerating Friedmann–Lemâitre–
Robertson–Walker (FLRW) universe, there is a maximum (areal)
radius beyond which a spherical shell of dust cannot collapse but
expands forever, driven by the cosmic accelerated expansion. We
formulate our final results in terms of the areal radius (R) because
solutions of modified gravity theories are reported in the litera-
ture using various radial coordinates. However, effects peculiar to a
particular coordinate systemwould not bemeaningful in relativis-
tic gravity,1 while effects characterized in a geometric, coordinate-
independent, way are physically meaningful. The areal radius
separating two points in space is a physical distance identified in
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1 Unless that coordinate system is associatedwith a preferred family of observers.

a completely geometric way by the area of 2-spheres of symmetry
in a spherically symmetric spacetime. In a spatially FLRW universe
with line element ds2 = −dt2 + a2(t)


dr2 + r2dΩ2

(2)


, the phys-

ical (areal) radius is R(t, r) = a(t)r and it expands with the scale
factor a(t), while the comoving radius r is simply a label attached
to elements of the cosmic fluid.

The first comparisons of the prediction for the turnaround ra-
dius in the ΛCDM model of General Relativity with objects in the
sky have been carried out [23–25,22] and, although the precision
is still poor, the method holds promise. In General Relativity, the
concept of turnaround radius can be made more rigorous by using
the Hawking–Hayward quasi-local mass [26]. Given the motiva-
tion for modified gravity in cosmology, here we propose to extend
the scope of studies of the turnaround radius to alternative theo-
ries of gravity. We do not commit to any specific modified gravity
theory at this stage, but adopt a post-Friedmannian approach [27]
in which a post-FLRWmetric fits many theories, to lowest order in
metric perturbations from an exact FLRW background. Contrary to
General Relativity, in which two scalar potentials in the perturbed
FLRW metric coincide (apart from the sign), in modified gravity
there are two distinct potentials which are not trivially related.
We derive the turnaround radius in this scheme and find that the
physical (areal) turnaround radius depends on both potentials. We
point out that, in order for studies of the turnaround radius to be
meaningful, it is not sufficient to pick a theory of modified gravity
but effortsmust bemade to establishwhich solutions of this theory
are generic in some appropriate sense.

Themetric signature employed in this paper is−+++ and we
use units in which Newton’s constant G and the speed of light c
assume the value unity.
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2. Turnaround radius in the parametrized post-Friedmannian
approach

The parametrized post-Friedmannian approach [27] describes
perturbations of a FLRW universe in theories of gravity alterna-
tive to General Relativity. The line element (1) is a rather gen-
eral parametrization of the metric describing perturbed FLRW
universes inmodified gravity [28–30] (it holds, for example, in f (R)
gravity [31,32]). The spacetimemetric in the conformal Newtonian
gauge is [33–38]

ds2 = a2(η)

− (1 + 2ψ) dη2 + (1 − 2φ)


dr2 + r2dΩ2

(2)


, (1)

where dΩ2
(2) = dθ2 + sin2 θ dϕ2 is the metric on the unit 2-

sphere, η is the conformal time (related to the comoving time
t by dt = adη), a(η) is the scale factor of the spatially flat
FLRW background, and φ andψ are two post-Friedmannian scalar
potentials. While in General Relativity it is ψ = −φ, in many
modified theories of gravity these two potentials do not coincide in
absolute value and the gravitational slip ξ ≡ (φ − ψ) /φ is used
in experiments aiming at detecting deviations from the standard
ΛCDM scenario [39,40,33,35–38]. The ansatz (1) does not include
vector and tensor metric perturbations, which is justified at lower
order for non-relativistic velocities, and is common practice in the
literature on cosmological perturbations (e.g., [41,42]).2

Following the literature on the turnaround radius in cosmology
[23–25,22], we assume that the FLRW perturbation is spherically
symmetric, i.e., φ = φ(r), ψ = ψ(r). The numerical importance
of deviations from spherical symmetrywas discussed in [43,23,24].
The simplest definition of turnaround radius consists of consid-
ering spherical shells of test particles respecting the spacetime
symmetry (that is, expanding or contracting but not shearing nor
rotating) with areal radius R, and imposing that they have zero ra-
dial acceleration, R̈ = 0, where an overdot denotes differentiation
with respect to the comoving time t of the FLRW background. We
will adopt here this common criterion which, in General Relativ-
ity, can be justified rigorously [44] by making use of the Hawk-
ing–Hayward quasi-local mass construct [45,46]. In general, this
quasi-local energy construct is not defined in modified gravity and
here we will stick to the simple definition R̈ = 0 for shells of test
particles (dust) in radial motion.

Massive test particles follow timelike geodesicswith 4-tangents
ua satisfying ucuc

= −1 and the geodesic equation

dua

dτ
+ Γ a

bcu
buc

= 0, (2)

which we choose to be affinely parametrized by the proper time τ ,
and where

Γ a
bc =

1
2
gad 

gdb,c + gdc,b − gbc,d


(3)

are the coefficients of the metric connection. We will perform first
order calculations in the metric perturbations φ and ψ , but the
density contrast related to the spatial Laplacian of these metric
perturbations is allowed to be large [44,41,42]. The normalization

ucuc
= g00(u0)2 + g11(u1)2 = −1 (4)

2 An effect due to a metric of the form (1) would signal modified gravity and,
neglecting vector and tensor degrees of freedom in themetric (which is legitimate at
this order of approximation), the potentialsψ and ϕ are all that remains in the line
element. However a better characterization ofmodified gravity than themetric is, at
least in principle, needed and a rigorous derivation of the line element (1) in various
classes of modified gravity theories is still missing. Nevertheless, the turnaround
radius will probably be unaffected by these theoretical improvements.

for massive test particles with purely radial motion (u2
= u3

= 0)
yields

(u0)2 =
1
a2
(1 − 2ψ)+ (1 − 2φ − 2ψ) (u1)2 (5)

to first order. Eq. (2) then gives

duµ

dτ
+ Γ

µ

00(u
0)2 + 2Γ µ

01u
0u1

+ Γ
µ

11(u
1)2 = 0 (6)

for µ = 0, 1. Eq. (3) provides the only non-vanishing Christoffel
symbols to first order

Γ 0
00 =

aη
a
, Γ 0

01 = Γ 0
10 = ψ ′, Γ 0

11 =
aη
a
(1 − 2φ − 2ψ), (7)

Γ 1
00 = ψ ′, Γ 1

01 = Γ 1
10 =

aη
a
, Γ 1

11 = −φ′, (8)

where a prime denotes differentiation with respect to the radial
coordinate r and aη ≡ da/dη. Therefore, it is

du0

dτ
+

aη
a
(u0)2 + 2ψ ′u0u1

+
aη
a
(1 − 2φ − 2ψ) (u1)2 = 0, (9)

du1

dτ
+ ψ ′(u0)2 +

2aη
a

u0u1
− φ′(u1)2 = 0. (10)

The areal radius of the spherical spacetime (a geometric and
coordinate-independent quantity) is

R(t, r) = ar

1 − 2φ ≃ ar (1 − φ) (11)

to first order. Since

dR
dt

= (ȧr + aṙ) (1 − φ) , (12)

d2R
dt2

= (är + 2ȧṙ + ar̈) (1 − φ) , (13)

and

ṙ ≡
dr
dt

=
dr
dη

dη
dt

=
1
a
dr
dτ

dτ
dη

=
u1

au0
, (14)

r̈ =
d
dt


u1

au0


= −

ȧ
a2

u1

u0
+

1
a2u0

d
dτ


u1

u0


, (15)

we have

d2R
dt2

=


är +

ȧu1

au0
+

1
au0

d
dτ


u1

u0


(1 − φ) . (16)

The criterion d2R/dt2 = 0 locating the turnaround radius [23–25]
becomes

är + H
u1

u0
+

1
au0


1
u0

du1

dτ
−

u1

(u0)2

du0

dτ


= 0, (17)

whereH ≡ ȧ/a is the Hubble parameter in comoving time. To zero
order we have R = ar and Ṙ = ȧr + aṙ = HR (the Hubble law) for
timelike geodesics, so that their 4-tangents have components

uµ = uµ(0) + δuµ =


1
a
, 0, 0, 0


+ δuµ (18)

in coordinates (η, r, θ, ϕ), where the perturbations δuµ are of first
order. To zero order it is u0

(0) = dη/dτ = dη/dt = 1/a and
u1
(0) = 0. Eq. (17) now yields, to first order,

är + 2ȧδu1
+ a

d(δu1)

dτ
= 0. (19)
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