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a b s t r a c t

We study the dynamics of scalar metric fluctuations in a non-perturbative variational formalism recently
introduced, by which the dynamics of a geometrical scalar field θ , describes the quantum geometrical
effects on aWeylian-likemanifold with respect to a background Riemannian space–time. In this letter we
have examined an example in the framework of inflationary cosmology. The resulting spectral predictions
are in very good agreement with observations and other models of inflation.
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1. Introduction

The inflationary theory of the universe provides a physical
mechanism to generate primordial energy density fluctuations on
cosmological scales [1]. The primordial scalar perturbations drive
the seeds of large scale structure which then had gradually formed
today’s galaxies, which is being tested in current observations
of cosmic microwave background (CMB). These fluctuations are
today larger than a thousand size of a typical galaxy, but
during inflation were very much larger than the size of the
causal horizon. According with this scenario, the almost constant
potential depending of a minimally coupled to gravity inflation
field ϕ, called the inflaton, caused the accelerated expansion of the
very early universe. In particular, back-reaction effects have been
subject of study. Quantum vacuum fluctuations are continuously
generated on sub-Hubble scales. As the wavelengths of these
fluctuation modes exit the Hubble radius, the vacuum oscillations
the modes get squeezed and become the seeds for the observed
inhomogeneities in the distribution of matter and anisotropies.
In this framework, the evolution of scalar metric fluctuations has
been studied in [2].

In this letter, I consider gauge-invariant fluctuations of the
metric using a new variational method recently introduced named
Relativistic Quantum Geometry (RQG). These fluctuations were
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extensively studied using linear perturbative corrections [3].
Nonlinear perturbative corrections were studied in [4]. The scalar
metric perturbations of the metric are associated with the density
perturbations. These are spin-zero projections of the graviton,
which only exist in non-vacuum cosmology. The issue of gauge-
invariance becomes critical when we attempt to analyse how the
scalar metric perturbations produced in the very early universe
influence the global flat, isotropic and homogeneous universe,
described by a background FLRWmetric.

2. Geometrical quantum dynamics

The variation of the metric tensor must be done in a Weylian-
like integrable manifold [5] using an auxiliary geometrical scalar
field θ , in order to the Einstein tensor (and the Einstein equations)
can be represented on a Weylian-like manifold [6], in agreement
with the gauge-invariant transformations obtained in [5]. If we
consider a zero covariant derivative of the metric tensor in
the Riemannian manifold (we denote with a semicolon the
Riemannian-covariant derivative): 1gαβ = gαβ;γ dxγ

= 0, hence
the Weylian-like covariant derivative gαβ|γ = θγ gαβ , described
with respect to the Weylian-like connections1

Γ α
βγ =


α

β γ


+ θα ĝβγ , (1)

will be nonzero
δĝαβ = ĝαβ|γ dxγ

= −

θβ ĝαγ + θα ĝβγ


dxγ . (2)

1 To simplify the notation we shall denote θα ≡ θ,α .
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From the action’s point of view, the scalar field θ(xα) is a generic
geometrical transformation that leads invariant the action [7]

I =


d4x̂


−ĝ


R̂
2κ

+ L̂



=


d4x̂


−ĝe−2θ

 
R̂
2κ

+ L̂


e2θ


, (3)

where we denote with a hat, the quantities represented on the
semi-Riemannianmanifold. Hence,Weylian-like quantities will be
varied over these quantities in a semi-Riemannianmanifold so that
the dynamics of the system preserves the action: δI = 0, and we
obtain

−
δV
V

=

δ


R̂
2κ + L̂




R̂
2κ + L̂

 = 2 δθ, (4)

where δθ = θµdxµ is an exact differential and V =


−ĝ is the
volume of the Riemannian manifold. Of course, all the variations
are in the Weylian-like geometrical representation, and assure us
gauge invariance because δI = 0. Using the fact that the tetra-
length is given by S =

1
2xν Ûν and the Weylian-like velocities are

given by uµ
= Ûµ

+ 2θµS, can be demonstrated that

uµuµ = 1 + 4S


θµÛµ
−

4
3
Λ S


. (5)

The components uµ are the relativistic quantum velocities, given
by the geodesic equations

duµ

dS
+ Γ

µ
αβu

αuβ
= 0, (6)

such that the Weylian-like connections Γ
µ
αβ are described by

(1). In other words, the quantum velocities uµ are transported
with parallelism on the Weylian-like manifold, meanwhile Ûµ

are transported with parallelism on the Riemann manifold. If we
require that uµuµ = 1, we obtain the gauge

∇̂µAµ
= −2

dθ
dS

. (7)

Since was demonstrated in [5] the Einstein tensor can be written
as

Ḡαβ = Ĝµν + θα;β + θαθβ +
1
2
gαβ


(θµ);µ + θµθµ


, (8)

and we can obtain the invariant cosmological constant Λ

Λ = −
3
4


θαθα

+ �̂θ

, (9)

so that we can define a geometrical Weylian-like quantum action
W =


d4x


−ĝ Λ, such that the dynamics of the geometrical

field, after imposing δW = 0, is described by the Euler–Lagrange
equations which take the form

∇̂αΠα
= 0, or �̂θ = 0, (10)

where the momentum components are Πα
≡ −

3
4θ

α and the
relativistic quantum algebra is given by [5]

[θ(x), θα(y)] = −iΘα δ(4)(x − y),

[θ(x), θα(y)] = iΘα δ(4)(x − y),
(11)

withΘα
= ih̄ Ûα andΘ2

= ΘαΘα
= h̄2 Ûα Ûα for the Riemannian

components of velocities Ûα .

3. Power-law inflation

In order to describe an example, we shall consider the case
of an inflationary universe where the scale factor of the universe
describes a power-law expansion, and the line element related
with the background semi-Riemannian curvature, is

dŜ2 = ĝµνdx̂µdx̂ν
= dt̂2 − a2(t)η̂ijdx̂idx̂j, (12)

where the hat denotes that the metric tensor is defined over a
semi-Riemannian manifold. We shall define the action I on this
manifold, so that the background action describes the expansion
driven by a scalar field, which is minimally coupled to gravity

I =


d4x


−ĝ


R̂

16πG
+


1
2
φ̇2

− V (φ)


. (13)

In power-law inflation the scale factor of the universe and the
Hubble parameter, are given respectively by [8]

a(t) = β tp, H(t) =
p
t
, (14)

where β =
a0
tp0
, a0 is the initial value of the scale factor, t0 is the

initial value of the cosmic time, and the background solution for
the inflaton field dynamical equation

φ̈ + 3
ȧ
a
φ̇ + V ′(φ) = 0, (15)

is

φ(t) = φ0


1 − ln


α

4πφ2
0 G

t


, (16)

where p = 4πGφ2
0 , β =

a0
tp0

and α = Hf is the value of the

Hubble parameter at the end of inflation. The scalar potential can
be written in terms of the scalar field

V (φ) =
3

8πGH2
f


1 −

1
12πGφ2

0


e2(φ/φ0), (17)

which decreases with φ.

3.1. Geometrical dynamics of space–time

The geometrical scalar field θ can be expressed as a Fourier
expansion

θ(x⃗, t) =
1

(2π)3/2


d3k


Ak eik⃗.x⃗ξk(t) + AĎ e−ik⃗.x⃗ξ ∗

k (t)

, (18)

where AĎ and Ak are the creation and annihilation operators. From
the point of view of the metric tensor, an example in power-law
inflation can be illustrated by

gµν = diag

e2θ , −a2(t)e−2θ , −a2(t)e−2θ , −a2(t)e−2θ  , (19)

such that the related quantum volume is Vq = a3(t)e−2θ
=

−ĝ e−2θ . The dynamics for θ is governed by the equation

θ̈ + 3
ȧ
a
θ̇ −

1
a2

∇
2θ = 0, (20)

and the momentum components are Πα
≡ −

3
4θ

α , so that the
relativistic quantum algebra is [5]

[θ(x), θα(y)] = −iΘα δ(4)(x − y),

[θ(x), θα(y)] = iΘα δ(4)(x − y),
(21)
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