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ABSTRACT

We present a scattering model for regolith-covered Solar System bodies. It can be used to compute the
intensity of light scattered by a surface consisting of packed, mutually shadowing particles. Our intention
is to provide a model in which other researchers can apply in studies of Solar System photometry.

Our model is a Lommel-Seeliger type model, representing a medium composed of individual scat-
terers with small single-scattering albedo. This means that it is suitable for dark regolith surfaces such as
the Moon and many classes of asteroids. Our model adds an additional term which takes into account the
mutual shadowing between the scatterers. The scatterers can have an arbitrary phase function. We use a
numerical ray-tracing simulation to compute the shadowing contribution.

We present the model in a form which makes implementing it in existing software straightforward
and fast. The model in practice is implemented as files containing pre-computed values of the surface
reflection coefficient, which can be loaded into a user's program and used to compute the scattering in
the desired viewing geometries. As the usage requires only a little simple arithmetic and a table look-up,

it is as fast to use as common analytical models.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The surfaces of most atmosphereless Solar System bodies are
covered by a layer of regolith, loose material consisting of packed
mineral grains. Examples include the Moon and the asteroids. The
properties, such as the particle size distribution and composition,
of the regolith vary between different bodies.

Photometry is an important tool to study especially the small
bodies; of most asteroids we know very little aside from some
number of photometric brightness measurements at different points
in time. Still, photometric time series (lightcurves) can provide
information on the shape and rotational state of the asteroid, as well
as their size, when combined with other methods. For reviews on
the applications of asteroid disk-integrated photometry, see Kaasa-
lainen et al. (2002) and a chapter in the upcoming Asteroids IV book.

The scattering of light by regolith surfaces has been studied for
a long time. The best known phenomena in the field include the
brightness of the lunar disk and its variations with lunar phase
(e.g. Hapke and van Horn, 1963; Lumme and Irvine, 1982). It has
long been known that at low phase angles (close to full moon), the
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brightness of the surface grows significantly higher. The same is
also true for asteroids (Muinonen et al., 2002). A truly rigorous
study of the scattering by a large particulate surface with irregular
grains and a wide size distribution is still beyond our computa-
tional capabilities. Various approximations must be employed in
every model. An up-to-date review on the subject is expected in
the upcoming Asteroids IV book.

In this paper, we present a numerical implementation of a model
for scattering by a regolith surface, which takes into account the
mutual interactions between the particles in a loosely packed
regolith. Our aim is to provide a tool for other researchers, which can
be easily implemented and used.

In Section 2, we cover the theoretical background of our scat-
tering model. In Section 3, we describe the numerical methods used
to compute the model values. In Section 4, we describe the resulting
scattering models. In Section 6, we present our conclusions, with an
application example in Section 5.

2. Theory

The scattering of a surface element is generally a function of the
directions of the incident and emergent light, the viewing geo-
metry. We assume the surface is isotropic and only the relative
directions matter. In our usage the viewing geometry is given as
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Sun Observer

Fig. 1. The definition of the viewing geometry of a surface. ¢; is the angle between
the incident light and the surface normal, 6. between the observer's direction and
the normal.

four angles, shown in Fig. 1. 6; is the angle of incidence and 6, the
angle of emergence. « is the solar phase angle and ¢ is the azimuth
angle.

Only three of the four angles are needed to fully describe the
geometry. Parts of the model are easier to describe in terms of ¢
and other parts in terms of @, so these two angles are both used.
The cosines of @; and @, are used often and called y, and p.

In general, the relationship between the observed intensity of
the light scattered by the surface for incident flux density zk can
be written

I, s ) = poR g, p, $)Fo, M

where R is the bidirectional reflection coefficient, which depends on
the properties of the surface. R can be separated into two parts, the
phase function and the disk function, where the first depends only
on the phase angle and the second is a function of the full viewing
geometry. This is due to the background in lunar photometry,
where the phase function is a constant at any given time and
depends on the lunar phase, while the disk function is a function
on the location on the visible lunar disk.

There are many possible choices for R. For many applications,
Lommel-Seeliger scattering is chosen. The Lommel-Seeliger model
is a single-scattering solution of radiative transfer for semi-infinite
planar medium. It is valid for materials with low single-scattering
albedo, where the effects of multiple scattering are negligible. In
Lommel-Seeliger scattering, R o< 1/(uq + u).

We model the scattering by a thick layer of spherical particles.
We use the concept of a volume element, which is a small part of
the surface which can be thought of as the single scatterer in a
Lommel-Seeliger type scattering model. Our model has the form

1
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where &y and Py are the volume-element albedo and phase
function, respectively, a is the phase angle, and S is the shadowing
correction, which takes into account the interaction between
volume elements.

The shadowing correction is not a “shadowing function” in the
usual ray-tracing sense, meaning the fraction of illuminated surface
points. Instead it is defined as the ratio between a particulate surface
and a homogeneous Lommel-Seeliger surface. In the Lommel-See-
liger model, rays are attenuated exponentially everywhere inside the
surface material. In a particulate surface rays whose returning path
is similar to their incident path will be attenuated less. Because of
this the shadowing correction is generally greater than 1. In the limit
of a very loosely packed material, this S function depends only on
the roughness of the surface. We compute the values of the sha-
dowing correction numerically. See Section 3.1 for details.

3. Numerical methods
3.1. Deriving the shadowing correction through ray-tracing

We compute the shadowing correction S from Eq. (2) numeri-
cally for surfaces with different porosity and roughness properties
(see Section 3.2) and discretize it over the hemisphere of all illu-
mination geometries (see Section 3.3).

We use a surface composed of spheres with Lommel-Seeliger
scattering surfaces as a tool to compute S. We use a ray-tracing
simulation to compute the intensity scattered by such a surface, fRT.
An isotropic phase function (P (a) = 1) is used in the simulation. We
ignore the effects of multiple scattering, only using the first scat-
tering order. Since multiple scattering will only reduce the effects of
shadowing, this means that our shadowing correction is in general
larger than for a surface with significant multiple scattering.

In the limit of a very sparse medium, the ray-tracing is
equivalent to a semi-infinite Lommel-Seeliger scattering surface
with the disk-integrated brightness of a Lommel-Seeliger sphere
as the single-scattering phase function. The shadowing correction
S is defined as the ratio between the ray-tracing result and such a
Lommel-Seeliger surface.

The surface brightness fRT is computed with a so-called back-
wards ray-tracing algorithm; we trace a ray first from the “camera”
towards the surface, find the first intersection point with a particle
of the medium, and then trace a ray from the surface point to the
light source. At the intersection point, the viewing geometry is
computed relative to the local surface normal, and the brightness
of the scattered ray is computed using the Lommel-Seeliger
scattering model.

The ray-tracing is averaged over four realizations of the random
macroscale surface roughness (see Section 3.2). In total, 80 000
rays are traced for each discrete viewing geometry.

For the theoretical Lommel-Seeliger surface, the brightness is

A
Iis = 2V Prs(a)—2—,

4 Mo + 3)
where because our volume element is a Lommel-Seeliger scat-
tering sphere, our volume-element albedo is the Bond albedo of
such a sphere, &y = %(1 —In 2)wo, where @q is the single-scat-
tering albedo used in the simulation. Bs is the disk-integrated
brightness of a Lommel-Seeliger scattering sphere, as a function of
the phase angle,

Pis(a) = %(1 —In 2)4(1 —sin & tan & ln(cot g))
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The shadowing correction S can now be computed as the ratio
between the ray-tracing result and the theoretical value,
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The S computed this way is approximately independent of the
scattering model chosen for the individual spheres (in our case
Lommel-Seeliger). This approximation of S becomes worse as the
packing density of the surface increases.
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