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a b s t r a c t

In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop an
universal stellar law for extrasolar systems. Previously, it has been proposed the statistical theory for a
cosmogonic body forming (so-called spheroidal body). The proposed theory starts from the conception
for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form
of distribution functions, mass density, gravitational potentials and strengths both for immovable and
rotating spheroidal bodies as well as to find the distribution function of specific angular momentum. If
we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun)
inside a prestellar (presolar) nebula then the derived distribution functions of particle as well as the
mass density of an immovable spheroidal body characterize the first stage of evolution: from a prestellar
molecular cloud (the presolar nebula) to a forming core or a protostar (the proto-Sun) together with its
shell as a stellar nebula (the solar nebula). This paper derives the equation of state of an ideal stellar
substance based on conception of gravitating spheroidal body. Using this equation we obtain the
universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of
stars. This work also considers the solar corona in the connection with USL. Then it is accounting under
calculation of the ratio of temperature of the solar corona to effective temperature of the Sun' surface
and modification of USL. To test justice of the modified USL for different types of stars, temperature of
the stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the
modified USL as well as the known Hertzsprung–Russell's dependence is derived from USL directly. This
paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own
parameters of stars. In this connection, comparison with estimations of temperatures using of the
regression dependences for multi-planet extrasolar systems testifies the obtained results entirely.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In 1911–24 the astronomers Russell, Hertzsprung and Edding-
ton established that for stars of the Main sequence there is a
dependence of luminosity of a star on temperature of its stellar
surface (the diagram of Hertzsprung–Russell), and also there is a
connection between luminosity L and mass M of star (the diagram
of mass–luminosity) (Eddington, 1916; Jeans, 1929). According to
this diagram for stars of the Main sequence, the mass–luminosity
dependence looks like LpMs, where s¼2.6 for stars of small
masses (�1:1o lgM=MSuno�0:2), s¼4.2 for stars of medium
masses (�0:2o lg M=MSuno0:4) and s¼3.3 for stars of big
masses (0:6o lgM=MSuno1:7), MSun is the mass of the Sun. In
the monograph (Krot, 2012a) p.416, the different versions of
invariant relations between temperature T, concentration n and
parameter of gravitational compression α of Sun-like stars have

been derived on the basis of the theory of rotating and gravitating
spheroidal bodies. Recently Pintr et al. (2013) have found heuristic
regression dependences, i.e. they have studied the regression
dependence of the distance of planets an from the central stars
on the parameter of specific angular momentum anvn (an is a
planetary distance and vn is a planetary velocity) and then they
have applied the regression analysis to other physical parameters
of stars, namely, anTeff, anL, and anJ, where Teff is an effective
temperature of stellar surface, L is a luminosity of a star, J is a
stellar irradiance for the multi-planet extrasolar systems. There-
upon there is a question: whether there exist like the Kepler's laws
an universal law for the planetary systems connecting temperature,
size and mass of each of stars?

According to the statistical theory of gravitating spheroidal
bodies (Krot, 2012a, 2012b, 2009) under the usage of laws of
celestial mechanics in conformity to cosmogonic bodies (especially,
to stars) it is necessary to take into account an extended substance
called a stellar corona. In this connection the stellar corona can be
described by means of model of rotating and gravitating spheroidal
body. Moreover, the parameter of gravitational compression α of a
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spheroidal body (describing the Sun, in particular) has been
estimated on the basis of the linear size of its kernel, i.e. the
thickness of a visible part of the solar corona.

Really, NASA' astronomer Dr. S. Odenwald in his notice “How
thick is the solar corona?” wrote: “The corona actually extends
throughout the entire solar system as a “wind” of particles,
however, the densist parts of the corona is usually seen not more
than about 1–2 solar radii from the surface or about 690,000 to 1.5
million kilometers at the equator. Near the poles, it seems to be a
bit flatter…” (Odenwald, 1997). In the fact, a recession of plots of
dependences of relative brightness of components of spectrum of
the solar corona occurs on distance of 3–3.5 radii from the center,
i.e. on 2–2.5 radii from the edge of the solar disk.

Thus, accepting thickness of a visible part of the solar corona
equal to Δ¼2R (here R is radius of the solar disk) we find that
rn¼RþΔ¼3R, where rn ¼ 1=

ffiffiffiffi
α

p
. In other words, the parameter of

gravitational compression α¼ 1=rn2 of a spheroidal body in case of
the Sun with its corona (for which the equatorial radius of disk
R¼6.955�108 m) can be estimated by the value (Krot, 2012a,
2012b):

α¼ 1
ð3RÞ2

� 2:29701177718� 10�19ðm�2Þ: ð1Þ

So, the procedure of a finding α is based on the known 3s-rule
in the statistical theory, where s¼ 1=

ffiffiffiffi
α

p
is a root-mean-square

deviation of a random variable.
Really, the solar corona accounting under calculation of per-

turbed orbit of the planet of Mercury allows to find the estimation
of a displacement of perihelion of Mercury'orbit for the one period
within the framework of the statistical theory of gravitating
spheroidal bodies. As it is known, on a way of specification of
the law of Newton using the general relativity theory the Mercury
problem solving was found (Einstein, 1921). Nevertheless, from a
common position of the statistical theory of gravitating spheroidal
bodies the points of view as Leverrier (about existence of an
unknown matter) and Einstein (about insufficiency of the theory
of Newton) practically differ nothing. Really, there exist plasma as
well as gas-dust substance around of kernel of cosmogonic body
(in particular, the solar corona in case of the Sun), i.e. the account
of circumstance that forming cosmogonic bodies have not precise
outlines and are represented by means of spheroidal forms
demands some specification of the Newton' law in connection
with a gravitating spheroidal body.

Using the Binet' formula the equation of disturbed orbit of a
planet (the Mercury) in a vicinity of a kernel of a rotating and
gravitating spheroidal body has been derived. The obtained rela-
tion expresses the equation of the so-called “disturbed” ellipse in
polar coordinates with the origin of coordinates in focus, i.e. the
planet Mercury is moving on a precessing elliptic orbit in view of
the fact that there is a modulating multiplier of a phase (or
azimuth angle). So, within the framework of the statistical theory
of gravitating spheroidal bodies the required angular moving of
Newtonian ellipse during one turn of Mercury on the disturbed
orbit (or displacement of perihelion of its orbit for the period) has
been estimated (Krot, 2012a, 2012b):

δε¼ 2πð3þeÞε02
αa2ð1�e2Þ2

; ð2Þ

where through a and e a major semi-axis and an eccentricity of
Mercury's orbit are designated respectively, α is a parameter of
gravitational compression and ε0 is a geometrical eccentricity of
kernel of a rotating and gravitating spheroidal body (the Sun). Thus,
according to the proposed formula (2) the turn of perihelion of
Mercury' orbit is equal to 43.93" in century that well is consistent
with conclusions of the general relativity theory of Einstein (whose

analogous estimation is equal to 43.03”) and astronomical observa-
tion data (43.1170.45") (Krot, 2012a, 2012b).

This work also considers the solar corona in the connection
with so-called universal stellar law (USL) introduced in the Section
3. Then it is accounting under calculation of the ratio of tempera-
ture of the solar corona to effective temperature of the Sun' surface
and modification of USL in the next Section 4. To test justice of USL
for different types of stars, temperature of the stellar corona is
estimated in the Section 5. The Section 6 shows that knowledge of
some characteristics for multi-planet extrasolar systems permits us
to refine own parameters of stars. Really, the numerous papers are
devoted to investigations of exoplanetary systems in the last time
(for example, (Nottale, 1996; Butler et al., 1999; Agnese and Festa,
1999; Laskar, 2000; Marcy et al., 2001, 2002; Kenyon, 2002; Mayor
et al., 2003; De Oliveira Neto et al., 2004, 2005, 2006; Santos et al.,
2004; Lovis et al., 2006; Udry et al., 2006; Pepe et al., 2007;
Wittenmyer et al., 2007; Döllinger et al., 2007; Sato et al., 2008;
Poveda and Lara, 2008; Pintr et al., 2008; Léger et al., 2009; Queloz
et al., 2009; Charbonneau et al., 2009; Mayor et al., 2009a, 2009b;
Bouchy et al., 2009; Borucki and the Kepler Team, 2010; Borucki et
al., 2010; Borucki et al., 2011a, 2011b; Lovis et al., 2011; Kunitomo
et al., 2011; Flores-Gutiérrez and Garcia-Guerra, 2011; Fressin et
al., 2011; Schneider, 2013)). In this connection, comparison with
estimations of temperatures using of the mentioned above regres-
sion dependences for multi-planet extrasolar systems testifies the
obtained results entirely.

2. The strength, potential and potential energy of the
gravitational field of spheroidal body formed by a collection of
particles

According to the statistical theory of gravitating spheroidal
bodies (Krot, 2012a, 2012b, 2009) the probability density function
of a particle having distance r being confined between r and rþdr
from the center of a spheroidal body can be expressed by the
following formula:

f ðrÞ ¼ 4π
α
2π

� �3=2
r2e�αr2=2; ð3Þ

so that a mass density function of a spheroidal body is equal to

ρðrÞ ¼ ρ0e
�αr2=2; ð4Þ

where ρ0¼M(α/2π)3/2 is a density in the center of a spheroidal
body, M is a mass of a spheroidal body.

Let us calculate the characteristics of the gravitational field
produced by a collection of isolated particles in the form of a
spheroidal body. We shall use the gravitational field equation in
nonrelativistic mechanics written down in the form of the Poisson
equation (Landau and Lifschitz, 1951):

Δφg ¼ 4πγρ; ð5Þ
where Δ is the Laplacian operator, γ¼6.673�10�11 Nm2/kg2 is the
Newtonian constant of gravitation, φg is a gravitational field
potential, ρ is a body mass density. We shall seek a spherically
symmetric solution φg depending on r only, therefore (5)
becomes:

1
r2

d
dr

r2
dφgðrÞ
dr

� �� �
¼ 4πγρ0e

�αr2=2 U ð6Þ

Since φg is a function of r alone, one obtains:

dφgðrÞ
dr

¼ 4πγρ0

R r
0 x

2e�αr2=2 dx
r2

U ð7Þ

On the other hand, the derivative (dφg(r))/(dr) determines the
gradient value a!ðrÞ ¼ �gradφgðrÞ, the gradient being also termed
the strength of the gravitational field (Landau and Lifschitz, 1951).
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