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a b s t r a c t

We derive in the plane problem a new closed solution of the Lagrangian equations for resonant motion,

concomitantly including zeroth order, and approximate first order and secular perturbations. A major

aim is the determination of simple lower limits for the maximum eccentricities and variations of

semimajor axes (intrinsic values). Applications of the general solution are made for each perturbation

separately. (i) Zeroth and first order perturbations: a new closed solution for the principal zeroth order

variation of semimajor axes is obtained. The maximum eccentricity and relative change of semimajor

axis of any lunar orbit cannot be lower than 0.019 and 0.018, respectively. (ii) Secular perturbations:

with the angular momentum integral our secular perturbations can be easily extended to the spatial

problem. The planetary Lidov–Kozai problem is extended to retrograde orbits, showing that large

variations of eccentricity and inclination occur for initially circular orbits, if initial mutual inclinations

are between about 401 and 1501. (iii) Resonant perturbations: for first and second order resonances, and

initially circular orbits our formulas generally approximate just the calculated orbital elements during

the whole motion. As a new unexpected result, the numerical exploration of the asteroid belt

reproduces most of its overall characteristics up to third order resonances within the restricted

three-body problem and modest initial eccentricities r0:05.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the orbital evolution of two small masses,
orbiting in a plane round a much larger mass in initially nearly
circular, sufficiently separated orbits. What are the outcomes of
initially quasicircular orbits? Circular orbits represent a natural limit
of elliptic motion, and it is commonly believed that their study has
marginal interest, since the orbits will stay quasicircular. Contrary to
this belief and anticipating some results, I find in the next sections
that (i) the maximum eccentricity and variation of semimajor axis of
initially circular, nonresonant orbits are unexpectedly large for the
distant outer mass (Section 3), (ii) inclinations and eccentricities
exhibit large variations for distant, initially circular, roughly perpen-
dicular planetary orbits (Section 4), (iii) maximum variations of
semimajor axes and eccentricities of first and second order reso-
nances of initially circular orbits are appreciable in the plane
problem, but severely bounded by simple analytical formulas
[Eqs. (61) and (62), Fig. 9 bottom].

The results of this paper have direct applicability to the
following topics:

(i) Planetary and satellite systems, especially if only few observa-
tions are available. If initial values of the orbital invariants

(48)–(50) are known, they often provide meaningful bounds
for the eccentricity e1 and inclination I1 of a nonresonant
(extrasolar) planet, after setting the elements of the other
planets equal to extreme values ei ¼ 0;1 and Ii ¼ 01,1801. And
Table 1 shows that the large observed eccentricities reported
by Tokovinin (2001, p. 89; 2004, p. 12) for the inner orbit in
triple (multiple) stellar systems occur in planetary systems too
for initially circular, roughly perpendicular orbits. So, the
existence of an exterior perturbing planet in a roughly per-
pendicular orbit could be an explanation (among many others)
for the numerous observed large eccentricities of extrasolar
planets (Marcy et al., 2000, p. 1304; Takeda et al., 2009).
Because secular variations of semimajor axes occur only at
third order in the disturbing masses (e.g. Stumpff, 1974,
p. 368), it seems important to have a simple closed formula for
the principal, periodic nonresonant variation of semimajor axis
in planetary and satellite systems, as given by Eqs. (37)–(44).

(ii) Planetary rings. As emphasized by Franklin et al. (1984,
p. 566), incorporation of resonant perturbations between a
ring particle and a neighbouring satellite can complement
the density wave theory of planetary rings having negligible
self-gravitation. Thus, our simple formulas from Eqs.
(55)–(62) are suitable for the calculation of the maximum
resonant changes of eccentricity and semimajor axis of a ring
particle orbiting at the inner or outer corotation eccentricity
resonance and at the inner or outer eccentric (Lindblad)
resonance. Actually, some of the gaps, edges, and arcs
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occurring in planetary rings can be explained in terms of these
resonances with observed satellites (mainly first order reso-
nances to be discussed in Appendix A): Mimas, Janus, Pandora,
and Prometheus for Saturn’s A and B ring, Cordelia and Ophelia
for the E ring of Uranus, and Galatea for the arcs in Neptune’s
Adams ring (Murray and Dermott, 1999, Chapter 10).

(iii) The asteroid and Edgeworth–Kuiper belt. Our simple formu-
las from Eqs. (55)–(62), (A.3), (B.7), together with the
resonance coefficients from Table 3 allow for a quick calcula-
tion by hand of the maximum variations of eccentricity and
semimajor axis for resonant asteroids and Edgeworth–Kuiper
objects. Specifically, an asteroid at maximum 2:1, 3:1, 5:3
resonance with Jupiter must have a maximum eccentricity
larger than 0.200, 0.078, 0.074, respectively, while a Plutino
at maximum 2:3 resonance with Neptune possesses max-
imum eccentricity 40:053, in accordance with the observed
deficiency of Plutinos with eccentricity o0:1 (Chiang et al.,
2007; Gomes, 2009, Fig. 1).

Hence, a main concern of this paper is to derive in the plane
problem simple analytical minima for the maximum eccentricities
and variations of semimajor axes, occurring always for initially
nearly circular orbits. And for a given initial ratio of semimajor
axes these lower limits, referred to as intrinsic values, cannot be
diminished further by any choice of initial conditions.

The plan of the paper is as follows. In Section 2 we derive a
new, exact closed solution of the Lagrangian equations for plane
resonant motion, concomitantly including zeroth order, and
approximate first order and secular perturbations.

In Section 3 we show that analytical perturbations of semi-
major axis and eccentricity up to first order are sufficient to
describe the plane motion of initially circular orbits, excepting for
very close, resonant, and some distant orbits (Figs. 1–3). We also
derive a new, closed analytical formula for the intrinsic variation
of semimajor axes (Fig. 1). A brief application to the Moon shows
that any lunar orbit has a maximum eccentricity 40:019 and a
relative variation of semimajor axis 40:018 (Fig. 4).

In Section 4 we extend the classical secular invariants to pro-
and retrograde orbits, large eccentricities and inclinations, with
particular emphasis on the planetary Lidov–Kozai problem (Libert
and Henrard, 2007; Farago and Laskar, 2010).

Sections 5 and 6 deal with the analytical and numerical
outcomes of resonant motion. In Section 5 we obtain the max-
imum variations of eccentricity and the maximum libration width
for individual resonances of arbitrary order, including uniform and
resonant pericentre motion. For first and second order resonances
and initially circular, sufficiently distant orbits, Eqs. (61) and (62)

Table 1

Maximum relative variation of semimajor axes Dai=ai ¼ 2ðai,max�ai,minÞ=ðai,maxþai,minÞ ði¼ 1;2Þ, maximum eccentricity ei,max , maximum and minimum inclination Ii,max ,Ii,min

with respect to the plane I10 ¼ 01, and maximum relative variation DC=C, DCI=CI of the secular constants C,CI from Eqs. (47) and (48) for initially circular orbits ðei0 ¼ 0Þ

of two equal masses mi=M¼ 0:001 started with a¼ a1=a2 ¼ 0:3 and selected values of the initial inclination I20 of m2. Note, the strong variation of ei,max at 41–421 and

148–1491 due to the Lidov–Kozai mechanism.

I20 Da1=a1 Da2=a2 e1max e2max DC=C

411 0.0001 0.008 0.003 0.007 0.003

421 0.0001 0.009 0.120 0.017 0.003

601 0.0003 0.016 0.619 0.119 0.005

901 0.0006 0.041 0.947 0.301 0.024

1201 0.0003 0.058 0.973 0.253 0.227

1481 0.0001 0.008 0.182 0.035 0.011

1491 0.0001 0.006 0.006 0.008 0.010

1791 0.0001 0.006 0.002 0.009 0.007

I20 I1min I1max I2min I2max DCI=CI

411 01 531 121 411 0.003

421 01 551 131 421 0.006

601 01 791 191 601 0.101

901 01 1161 371 901 0.598

1201 01 1771 571 1201 –

1481 01 1211 911 1481 0.034

1491 01 1181 931 1491 0.010

1791 01 41 1771 1791 0.007

Fig. 1. Theoretical zeroth order variation of semimajor axes dað0Þi =ai ¼

ðað0Þi �að0Þi,minÞ=ai ði¼ 1;2Þ for quasicircular orbits as a function of mutual mean

longitude difference w¼ l2�l1, according to Eqs. (41) and (42) if mi 5M. Values

of a¼ a1=a2 are indicated on the curves.
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