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a b s t r a c t

In the solar system all planets that have significant magnetic fields also emit electron cyclotron

radiation, usually near the auroral regions around the magnetic poles. In this study we use scaling laws

based on solar system data to estimate the power and frequency of the auroral cyclotron emissions

from interstellar planets (or sub-brown dwarfs). The emission can be powered either by motion of the

planet through the interstellar plasma or by unipolar induction due to a moon. According to our results,

in interstellar space the unipolar induction mechanism is potentially more effective than the motional

emission mechanism. Typical emission power is around 1010–1012 W, but significantly stronger

emissions are obtained in the most optimistic estimates. We have to conclude that detection of a

rogue Jupiter would be very difficult, if not impossible with the radio telescopes available now or in the

near future, but in very favorable conditions a much more massive and rapidly rotating (or otherwise

strongly magnetized) gas giant with a large nearby moon could be detected up to � 57 pc distance with

the square kilometer array. There may be a few thousand large enough interstellar planets this close to

the solar system. For reference, we point out that according to previous studies some known hot

Jupiters are expected to emit up to 1014–1016 W of cyclotron radiation, orders of magnitude more than

the typical interstellar planets discussed here. However, these emissions have not yet been detected.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the solar system all planets that have significant magnetic
fields also emit electron cyclotron radiation, usually near the
auroral regions around the magnetic poles (e.g. Zarka, 1998).
Frequency and power of the emission depend on the character-
istics of the planetary magnetic field and its interaction with the
surrounding plasma. Theoretical estimates, based on semi-
empirical scaling laws observed in the solar system, have been
made for emissions from exoplanets orbiting main sequence stars
(Farrell et al., 1999; Lazio et al., 2004; Grießmeier et al., 2007;
Zarka, 2007) and white dwarfs (Willes and Wu, 2005). These radio
sources have not yet been detected (Bastian et al., 2000; Zarka,
2007), but new facilities for low frequency radio astronomy
increase the likelihood significantly (Farrell et al., 2004).

In this study we apply the same scaling laws to estimate the
strength of cyclotron emission from interstellar planets or sub-
brow dwarfs, that do not orbit any star. In the following we
use the term ‘‘interstellar planet’’ for any object below � 13MJ

(Jupiter mass), whether they are kicked out from stellar systems
(e.g. Papaloizou and Terquem, 2001) or formed in interstellar
space (Boss, 2001). Due to their small size, lack of reflected light
and weak thermal emission, interstellar planets are difficult to
detect. Direct optical or infra-red imaging (e.g. Zapatero Osorio

et al., 2000; Lucas and Roche, 2000; Luhman et al., 2005) is
limited to hot (young) planets, while gravitational microlensing
(e.g. Han et al., 2004) would give only one-time signal from each
detected object. Detection of auroral radio emission would
complement these observations by giving direct information
about the planet’s magnetic field, rotation rate and plasma
environment.

In interstellar space the energy source for auroral cyclotron
emission is either (1) motion of the planet through the surround-
ing plasma or (2) unipolar induction by moons moving through
the co-rotating magnetospheric plasma, like Io in the Jovian
system (e.g. Zarka, 2007). The first option is analogous to the
stellar wind flowing past planetary magnetospheres, while emis-
sion from the unipolar induction mechanism we assume to be
independent of the external environment.

In the solar system Jupiter is the strongest emitter of auroral
cyclotron radiation, with 1010–1011 W in frequencies o40 MHz,
and in the decameter range it is approximately as bright as solar
radio bursts (Zarka, 1998, 2007). For reference, a hot Jupiter
orbiting close to its parent star could emit as much as 1014–1016 W
in frequencies up to � 200 MHz (Lazio et al., 2004; Farrell et al.,
2004; Grießmeier et al., 2007).

In the following sections we first review selected scaling laws
for the magnitude of the planetary magnetic dipole moment, size
of the magnetosphere and conversion of kinetic or magnetic
energy flux into cyclotron radiation. We then discuss the aspects
of radio emission from planetary motion and from unipolar
induction in separate sections. At the end of the article we
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consider the possibility of detecting radio emission from inter-
stellar planets with present or planned radio telescopes.

2. Scaling laws

In this section we present some simple scaling laws for
estimating power and frequency of the auroral cyclotron emission
in various situations. These calculations should be considered as
order-of-magnitude estimates, rather than exact derivations.

2.1. Size of the magnetosphere

The characteristic size of a planetary magnetosphere can be
derived from pressure balance in the bow direction. For example,
Arridge et al. (2006) study the size and shape of Saturn’s
magnetosphere, while Petrinec and Russell (1997) discuss differ-
ent cases of pressure balance at planetary magnetopauses.
We determine the characteristic size from relation

pms ¼ pdynþpmagþpther , ð1Þ

where magnetospheric pressure pms must match the dynamic,
magnetic and thermal pressure of the external plasma. Inside the
magnetosphere magnetic pressure is much larger than the ther-
mal pressure (see, e.g. Russell, 2001), but in the interstellar
plasma all three pressures may have similar magnitude.

The magnetospheric pressure is caused by the planetary dipole
field and field generated by magnetopause currents. Together
these give pressure (Grießmeier et al., 2004)

pms �
m0f 2

0M
2

8p2R6
mp

, ð2Þ

whereM is the magnetic dipole moment, Rmp the magnetopause
distance and f0 � 1:16 an empirical form factor. We ignore the
effects of internal magnetospheric currents, which may increase
the magnetopause distance significantly (up to 10 s of planetary
radii at Jupiter, Russell, 2001). The dynamic, magnetic and
thermal pressures of the external plasma are

pdyn ¼ nempV2,

pmag ¼
B2

2m0

,

pther ¼ 2nekBT : ð3Þ

We have to specify the temperature T, magnetic field and electron
number density ne, as well as the speed V of the interstellar
planet. In the expressions for pdyn and pther we assume that the
plasma consist of ionized hydrogen.

2.2. Motional energy flux and emission efficiency

We estimate the energy flux to the magnetosphere simply as

F� ¼ pR2
mpVp�, ð4Þ

separately for the dynamic, magnetic and thermal pressure compo-
nents. The input energy is consumed in particle acceleration and
ionospheric Joule heating or leaves through the tail (e.g. Koskinen
and Tanskanen, 2002). A fraction of the kinetic energy of accelerated
electrons is converted into coherent radiation by the cyclotron maser
mechanism, usually in the acceleration regions above the auroral
ionosphere (Zarka, 1998). We write the total emitted power as

Pemit ¼ aFdynþbFmagþgFther , ð5Þ

where a, b and g are conversion efficiencies for the different types of
input energy. According to Zarka et al. (2001) reasonable estimates

based on solar system data are a¼ 10�6 . . .10�5 and b¼ 10�3 . . .
10�2, while Farrell et al. (2004) suggest b¼ 10�2 . . .10�1. Zarka et al.
(2001) point out that in the planet–solar wind interaction we cannot
reliably distinguish which energy source, dynamic or magnetic, is
really driving the cyclotron emission. However, in the unipolar
induction case (planet–moon interaction) magnetic energy flux is
dominant due to the small magnetospheric plasma density (Zarka,
2007). Conversion efficiency for the thermal energy flux is not really
known, as it is not important in the solar system, so we assume
g¼ 0.

2.3. Emission due to a moon

In the unipolar induction mechanism movement of a moon
across the planetary dipole field converts magnetic energy into
kinetic energy of accelerated particles and thereof into cyclotron
radiation. We follow Zarka (2007) and write the emitted cyclotron
power as

Pemit ¼ bpdipDVpR2
eff , ð6Þ

where the conversion efficiency b is the same as in Eq. (5).
Pressure due to the planets dipole field is approximately

pdip ¼
m0M2

32p2r6
, ð7Þ

where r is the mean orbital radius. We assume that the magneto-
spheric plasma co-rotates with the planet up to 10 s of planetary
radii, as in the Jovian and Kronian systems (Russell, 2001). Further
assuming that the moon orbits in the planet’s rotation direction,
the speed difference between the moon and the magnetospheric
plasma is

DV ¼

ffiffiffiffiffiffiffiffi
GM

r

r
�or

�����
�����, ð8Þ

where M is the mass of the planet and o its angular rotation
frequency. The effective radius Reff is either radius of the solid
surface or, if the moon has significant atmosphere or magnetic
field, the exospheric or magnetospheric radius (Zarka, 2007).

2.4. Magnetic dipole moment

In order to explore the possible range of the magnetic dipole
moment M, we would like to estimate it from the mass and
rotation period of the planet. Farrell et al. (1999) and Grießmeier
et al. (2004) discuss several different scaling laws of the form

MpMaob, ð9Þ

where the exponents vary in the range a¼1y2 and b¼0.5y1.
Perhaps a more reliable estimate could be obtained by solving
parameters of the dynamo region from an equation of state as
done by Grießmeier et al. (2007), but for the sake of simplicity we
will use Eq. (9), with exponents a¼1.5 and b¼0.75 in the middle
of the plausible range. We normalize the scaling law to Jupiter,
so that

M¼ 1:5� 1027 M

MJ

� �1:5 o
oJ

� �0:75

A m2: ð10Þ

2.5. Oblateness

Oblateness is defined in terms of the equatorial (Req) and polar
(Rp) radius as

Z¼ Req�Rp

Req
: ð11Þ
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