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ABSTRACT

Numerical simulations of dispersive turbulence in magnetized plasmas based on the Hall-MHD
description are presented, assuming spatial variations along a unique direction making a prescribed
angle with the ambient magnetic field. Main observations concern the energy transfers among the
different scales and the various types of MHD waves, together with the conditions for the establishment
of pressure-balanced structures. For parallel propagation, Alfvén-wave transfer to small scales is
strongly inhibited and rather feeds magnetosonic modes, unless the effect of dispersion is strong
enough at the energy injection scale. In oblique directions, the dominantly compressible character of
the turbulence is pointed out with, for quasi-transverse propagation, the presence of conspicuous
kinetic Alfvén waves. Preliminary simulations of a Landau fluid model incorporating relevant linear
kinetic effects reveal the development of a significant plasma temperature anisotropy leading to

recurrent instabilities.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulence in magnetized plasmas remains a main issue in the
understanding of the dynamics of media such as the solar corona,
the interstellar medium, the solar wind or the planet magne-
tosheaths. In the solar wind for example the turbulent cascade
extends much beyond the ion Larmor radius. One of the questions
concerns the spectrum of the magnetic fluctuations that displays
a power-law behavior on a broad range of wavenumbers, with a
conspicuous change of slope near the inverse ion gyroradius
(Leamon et al., 1998; Golstein and Roberts, 1999; Alexandrova
et al., 2006; Sahraoui et al., 2009). This effect is often associated
with the influence of wave dispersion, induced by the Hall current
(Ghosh et al., 1996; Galtier, 2006; Alexandrova et al., 2007; Galtier
and Buchlin, 2007; Servidio et al., 2007; Shaikh and Shukla, 2009),
but could also result from a superposition of cascades of kinetic
Alfvén waves and ion entropy fluctuations, as suggested by
studies based on the gyrokinetic formalism (Howes et al., 2008b,
2008a; Schekochihin et al., 2009).

At scales large compared with the ion inertial length or the ion
Larmor radius, the usual MHD description provides a satisfactory
description of regimes where, due to the presence of a strong
ambient field, a dominant effect is the anisotropic energy transfer
to Fourier modes with large transverse wavenumbers (see e.g.
Ghosh and Golstein, 1997; Oughton and Matthaeus, 2005 and
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references therein). This suggests that the dynamics of transverse
small scales may be amenable to a reduced MHD description
((Zank and Matthaeus, 1992) and references therein), possibly
including Hall current (Gémez et al., 2008) or, when retaining
scales significantly smaller than the ion Larmor radius, to a
gyrokinetic approach (Howes et al., 2006; Schekochihin et al.,
2009). The latter that appears to be very efficient in describing
strongly magnetized near-equilibrium fusion plasmas is still
under discussion concerning its applicability to space and
astrophysical plasmas (Matthaeus et al., 2008). In the solar wind
for example magnetic fluctuations may be comparable to the
ambient field. Furthermore, longitudinal transfer could a priori be
non-negligible in a compressible regime, at scales where Hall
current and Kinetic effects play a significant role. A weak
turbulence theory performed on the Vlasov-Maxwell system
was recently developed (Yoon and Fang, 2008), showing the
existence of a parallel cascade of low-frequency Alfvén waves
through a three-wave decay process mediated by ion-sound
turbulence, in a regime where wave-particle interactions are
neglected. Addressing this issue by direct numerical simulations
of the Vlasov—-Maxwell equations being still difficult on the
present-day computers, the question arises whether a similar
cascade can be observed within a fluid model that retains
important ingredients of the above theory, such as compressi-
bility and dispersion. As a first step, we address the problem
within the simplest description provided by Hall-MHD (HMHD)
with Ohmic and viscous dissipations, together with a large-scale
external driving acting on the transverse components of the
velocity or magnetic field. We specifically concentrate on a one-
dimensional setting where the variations of the fields are
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restricted to a direction making a prescribed angle with the
ambient magnetic field, a framework that already reveals a
manifold of complex dynamical processes that deserve detailed
investigations before including additional physical and multi-
dimensional effects. In the case of quasi-transverse propagation,
we also present simulations of a model that extends the HMHD by
retaining pressure anisotropy, Landau damping and finite Larmor
radius effects up to transverse scales significantly smaller than the
ion Larmor radius. This approach developed in Passot and Sulem
(2007) extends the so-called Landau fluid model initiated in
Snyder et al. (1997) for the MHD scales where Landau damping is
the only relevant kinetic effect.

The paper is organized as follows. Section 2 briefly reviews the
Hall-MHD description and its one-dimensional reduction. Section
3 concentrates on the case where the dynamics takes place in the
direction of the ambient field. The case of oblique propagation is
addressed in Section 4. Landau fluid simulations retaining small-
scale kinetic effects are reported in Section 5. Our conclusions are
summarized in Section 6.

2. The Hall-MHD description

HMHD can be viewed as a bi-fluid description of a plasma,
where electron inertia is neglected. The presence of the Hall term
in the generalized Ohm'’s law allows a decoupling of the ion fluid
from the electron one in which the magnetic field lines are frozen.
The validity conditions of HMHD are discussed in Howes (2009)
where comparisons with kinetic theory are presented. Choosing
as units the Alfvén speed, the amplitude of the ambient magnetic
field, the equilibrium density and the ion inertial length [; (defined
as the ratio of the Alfvén speed to the ion gyrofrequency), the
HMHD equations (for the ion fluid) read
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where the total f parameter is the square ratio of the sound to
Alfvén velocities, and a polytropic equation of state pocp? is
assumed for both ions and electrons.

When the spatial variation is restricted to a dependency on the
x coordinate along a direction making an angle 0 with the ambient
magnetic field By = (cosf, sinf, 0), one gets
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where driving and dissipation have been supplemented in both
the velocity and magnetic field equations. Here, the subscript [y,z]
refers to the vector component along the y or the z direction, or to
the value of the viscosity acting on the corresponding velocity
component. The + sign in front of the Hall term depends on the
considered component of the magnetic field. No (artificial)

hyperviscosity and magnetic diffusivity nor spectral filtering are
used in the simulations. Instead, anisotropic dissipations are
assumed. In the case of parallel propagation, different viscosities
and diffusivities are taken in the directions parallel and transverse
to the ambient field, by prescribing ry =K, = p, = u, < u,. For
oblique propagation, we assume smaller coefficients in the
direction perpendicular to the plane defined by the magnetic
field and the direction of propagation, in the form k,=p, <
Uy = Hy = Ky.

The driving is assumed to act either on the velocity (kinetic
driving) or the magnetic field (magnetic driving) components. For
parallel propagation, we prescribe fy=f2 or f2=f2 while, for oblique
propagation, the driving reduces to f! or to f2. Such a driving is
supposed to minimize the sonic components, as it is acting on
field components perpendicular to the ambient field in parallel
propagation and to the plane defined by the ambient field and the
propagation direction when the latter is oblique. The values of the
diffusivity and viscosities in the various directions are chosen as
the minimal values (depending on the spatial resolution and of
the physical parameters of the runs) needed to accurately resolve
all the retained scales.

In all the simulations, we take y=5/3 and f=2. Each
component of the kinetic or magnetic driving (generically
denoted f) is a white noise in time defined by its Fourier
transform f, = C&+/F,/At where ¢ is a Gaussian random variable
with zero mean and unit variance, chosen independently at each
time step. This ensures a constant mean flux of energy injection
that can be chosen at will, as in the usual phenomenology of the
turbulent cascades. Furthermore, such a driving process avoids an
artificial enhancement of a specific type of waves and enables the
emergence of the dominant modes as the result of the nonlinear
dynamics. The spectral distribution Fj, = k*exp(—(2k? /kf)) is
peaked about a wavenumber k.

The HMHD system is integrated in a periodic domain using a
Fourier pseudo-spectral method where most of the aliasing is
removed by spectral truncation of the computed nonlinear terms
at 2/3 of the maximal wavenumber. The spatial resolutions given
in the following sections are the effective ones, after aliasing has
been suppressed. In all the simulations, the temporal scheme is a
third-order low-storage Runge-Kutta (Williamson, 1980). Resol-
ving all the temporal scales present in the system, this scheme
accurately preserves the dispersion relation of all the linear
modes retained in the simulation, in contrast with implicit or
semi-implicit schemes (Laveder et al., 2009).

For convenience, we collected in Table 1, the main parameters
characterizing the simulations discussed in the forthcoming sections.

As seen in the following, in spite of the turbulent regime
achieved in the HMHD simulations discussed in this paper,
signatures of the linear waves are often present. It is thus useful
to briefly review the linear theory of eigenmodes for the HMHD
equations in the absence of dissipation and driving. By linearizing
Eqs. (5)-(8) about the equilibrium state associated to p=1,
by = cos0, b, =sin0, one derives that the (real) eigenfrequencies

Table 1
Simulation parameters of HMHD simulations.

Run Domain size Propagation angle (°) driving

A L=16xn 6=0 Kinetic, C=0.1, k ;=1/2

B L=16mn 0=0 Magnetic, C=0.1, kr [;=1/2

C L=4n 0=0 Kinetic, C=6.25 x 1073, ks ;=2
D L=4n 0=0 Magnetic, C=6.25 x 1073, ks [;=2
E L=167 0=45 Kinetic, C=0.1, kf ;=1/2

F L=4n 0 =45 Kinetic, C=6.25 x 1073, ks ;=2

G L=4n 0=45 Magnetic, C=6.25 x 1073, ky ;=2
H L=16n =80 Kinetic, C=0.1, k ;=1/2
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